Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Protein Expr Purif ; 211: 106339, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37467825

RESUMO

Human interferon alpha 2a (IFNα2a) is a secreted glycoprotein that exerts a wide spectrum of biological effects, such as triggering of antiviral, antitumor and immunosuppressive responses. IFNα2a is used as pharmaceutical polypeptide in chronic hepatitis C virus (HCV) infection, chronic myelogenous leukemia, advanced renal cell carcinoma, and metastatic malignant melanoma. So far, the pharmaceutical polypeptide of this cytokine is produced in prokaryotic expression systems (E. coli). Here we report the expression and purification of recombinant human IFNα2a in the methylotrophic yeast Pichia pastoris. The cDNA encoding for human IFNα2a, modified to bear the P. pastoris codon bias, was cloned into the pPinkα-HC vector in order to be expressed as a secreted protein upon induction. Proper expression and secretion of recombinant human IFNα2a (approximately 19 kDa) was confirmed by PCR-sequencing, SDS-PAGE and Western blot analysis following methanol-induced expression in a number of individual transformed strains. Purification of the recombinant protein was performed by affinity chromatography, achieving a robust yield of purified active form. The purified recombinant protein showed an impressive stability to thermal denaturation as observed by Differential Scanning Fluorimetry. The biological activity of the P. pastoris-produced IFNα2a was confirmed in A549 and HT29 cells by monitoring transcriptional up-regulation of a panel of known interferon-stimulated genes (ISGs). Our results document that the P. pastoris expression system is a suitable system for producing biologically functional IFNα2a in a secreted form.


Assuntos
Hepatite C Crônica , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Interferon-alfa/genética , Interferon-alfa/farmacologia , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia
2.
Mol Carcinog ; 57(9): 1251-1263, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29802738

RESUMO

CD8+ T-lymphocytes infiltration is a favorable prognostic marker in ovarian cancer. Recently we identified MEIS1 as a gene overexpressed in early stage ovarian tumors enriched for CD8+ T-cells. Here, we report the molecular mechanism of the homeodomain transcription factor MEIS1 in lymphocyte recruitment. We validated that MEIS1 expression is a positive predictor of CD8+ T cells in early stage ovarian cancer. We showed that MEIS1 induces the expression of CCL18, CCL4, CXCL7, CCL5, CXCL1, and IL8 chemokines in cancer cells followed by their secretion in the culture medium ultimately triggering CD8+ T-lymphocyte recruitment in vitro. Knock down of MEIS1 expression by siRNA resulted in downregulation of these chemokines. We verified that MEIS1 binds to the promoters of chemokine genes, both in vitro and in vivo. We also showed that the expression levels of MEIS1 correlated tightly with the mRNA levels of chemokines CCL4 and CCL18 in early stage ovarian cancer patient samples and served as a positive prognostic marker, as shown by Kaplan-Meyer survival analysis. In conclusion, we propose that MEIS1 plays a pivotal role in the regulatory circuitry governing T-cell chemo-attraction during the early stages of ovarian cancer.


Assuntos
Linfócitos T CD8-Positivos/patologia , Quimiocinas/genética , Regulação Neoplásica da Expressão Gênica , Proteína Meis1/genética , Neoplasias Ovarianas/patologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Quimiotaxia de Leucócito , Feminino , Humanos , Neoplasias Ovarianas/genética , Regulação para Cima
3.
Biomedicines ; 6(2)2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29601548

RESUMO

The NF-κB family of transcription factors regulate the expression of genes encoding proteins and microRNAs (miRNA, miR) precursors that may either positively or negatively regulate a variety of biological processes such as cell cycle progression, cell survival, and cell differentiation. The NF-κB-miRNA transcriptional regulatory network has been implicated in the regulation of proinflammatory, immune, and stress-like responses. Gene regulation by miRNAs has emerged as an additional epigenetic mechanism at the post-transcriptional level. The expression of miRNAs can be regulated by specific transcription factors (TFs), including the NF-κB TF family, and vice versa. The interplay between TFs and miRNAs creates positive or negative feedback loops and also regulatory networks, which can control cell fate. In the current review, we discuss the impact of NF-κB-miRNA interplay and feedback loops and networks impacting on inflammation in cancer. We provide several paradigms of specific NF-κB-miRNA networks that can regulate inflammation linked to cancer. For example, the NF-κB-miR-146 and NF-κB-miR-155 networks fine-tune the activity, intensity, and duration of inflammation, while the NF-κB-miR-21 and NF-κB-miR-181b-1 amplifying loops link inflammation to cancer; and p53- or NF-κB-regulated miRNAs interconnect these pathways and may shift the balance to cancer development or tumor suppression. The availability of genomic data may be useful to verify and find novel interactions, and provide a catalogue of 162 miRNAs targeting and 40 miRNAs possibly regulated by NF-κB. We propose that studying active TF-miRNA transcriptional regulatory networks such as NF-κB-miRNA networks in specific cancer types can contribute to our further understanding of the regulatory interplay between inflammation and cancer, and also perhaps lead to the development of pharmacologically novel therapeutic approaches to combat cancer.

4.
Cell Oncol (Dordr) ; 40(4): 303-339, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28748501

RESUMO

BACKGROUND: Cancer is one of the leading causes of mortality. The neoplastic transformation of normal cells to cancer cells is caused by a progressive accumulation of genetic and epigenetic alterations in oncogenes, tumor suppressor genes and epigenetic regulators, providing cells with new properties, collectively known as the hallmarks of cancer. During the process of neoplastic transformation cells progressively acquire novel characteristics such as unlimited growth potential, increased motility and the ability to migrate and invade adjacent tissues, the ability to spread from the tumor of origin to distant sites, and increased resistance to various types of stresses, mostly attributed to the activation of genetic stress-response programs. Accumulating evidence indicates a crucial role of microRNAs (miRNAs or miRs) in the initiation and progression of cancer, acting either as oncogenes (oncomirs) or as tumor suppressors via several molecular mechanisms. MiRNAs comprise a class of small ~22 bp long noncoding RNAs that play a key role in the regulation of gene expression at the post-transcriptional level, acting as negative regulators of mRNA translation and/or stability. MiRNAs are involved in the regulation of a variety of biological processes including cell cycle progression, DNA damage responses and apoptosis, epithelial-to-mesenchymal cell transitions, cell motility and stemness through complex and interactive transcription factor-miRNA regulatory networks. CONCLUSIONS: The impact and the dynamic potential of miRNAs with oncogenic or tumor suppressor properties in each stage of the multistep process of tumorigenesis, and in the adaptation of cancer cells to stress, are discussed. We propose that the balance between oncogenic versus tumor suppressive miRNAs acting within transcription factor-miRNA regulatory networks, influences both the multistage process of neoplastic transformation, whereby normal cells become cancerous, and their stress responses. The role of specific tumor-derived exosomes containing miRNAs and their use as biomarkers in diagnosis and prognosis, and as therapeutic targets, are also discussed.


Assuntos
Carcinogênese/genética , Transformação Celular Neoplásica/genética , MicroRNAs/genética , Neoplasias/genética , Progressão da Doença , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Humanos , Neoplasias/patologia , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA