Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biol Psychiatry ; 91(9): 821-831, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35219498

RESUMO

BACKGROUND: IQSEC3, a gephyrin-binding GABAergic (gamma-aminobutyric acidergic) synapse-specific guanine nucleotide exchange factor, was recently reported to regulate activity-dependent GABAergic synapse maturation, but the underlying signaling mechanisms remain incompletely understood. METHODS: We generated mice with conditional knockout (cKO) of Iqsec3 to examine whether altered synaptic inhibition influences hippocampus-dependent fear memory formation. In addition, electrophysiological recordings, immunohistochemistry, and behavioral assays were used to address our question. RESULTS: We found that Iqsec3-cKO induces a specific reduction in GABAergic synapse density, GABAergic synaptic transmission, and maintenance of long-term potentiation in the hippocampal CA1 region. In addition, Iqsec3-cKO mice exhibited impaired fear memory formation. Strikingly, Iqsec3-cKO caused abnormally enhanced activation of ribosomal P70-S6K1-mediated signaling in the hippocampus but not in the cortex. Furthermore, inhibiting upregulated S6K1 signaling by expressing dominant-negative S6K1 in the hippocampal CA1 of Iqsec3-cKO mice completely rescued impaired fear learning and inhibitory synapse density but not deficits in long-term potentiation maintenance. Finally, upregulated S6K1 signaling was rescued by IQSEC3 wild-type, but not by an ARF-GEF (adenosine diphosphate ribosylation factor-guanine nucleotide exchange factor) inactive IQSEC3 mutant. CONCLUSIONS: Our results suggest that IQSEC3-mediated balanced synaptic inhibition in hippocampal CA1 is critical for the proper formation of hippocampus-dependent fear memory.


Assuntos
Medo , Fatores de Troca do Nucleotídeo Guanina , Hipocampo , Sinapses , Animais , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Hipocampo/metabolismo , Potenciação de Longa Duração , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sinapses/metabolismo , Regulação para Cima
2.
Biochem Biophys Res Commun ; 556: 192-198, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33845309

RESUMO

Helicobacter pylori (H. pylori) infection mainly causes gastroduodenal diseases, including chronic gastritis, peptic ulcer disease and gastric cancer. In recent years, several studies have demonstrated that infection with H. pylori, especially strains harboring the virulence factor CagA (cytotoxin-associated gene A), contribute to the development of non-gastric systemic diseases, including hypercholesterolemia and atherosclerotic cardiovascular diseases. However, mechanisms underlying this association has not been defined. In this study, we carried out a large-scale genetic screen using Drosophila and identified a novel CagA target low-density lipoprotein receptor (LDLR), which aids in the clearance of circulating LDL. We showed that CagA physically interacted with LDLR via its carboxy-terminal region and inhibited LDLR-mediated LDL uptake into cells. Since deficiency of LDLR-mediated LDL uptake has been known to increase plasma LDL and accelerate atherosclerosis, our findings may provide a novel mechanism for the association between infection with CagA-positive H. pylori and hypercholesterolemia leading to atherosclerotic cardiovascular diseases.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Helicobacter pylori/metabolismo , Helicobacter pylori/patogenicidade , Lipoproteínas LDL/metabolismo , Receptores de LDL/metabolismo , Fatores de Virulência/metabolismo , Animais , Animais Geneticamente Modificados , Aterosclerose/microbiologia , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Olho/metabolismo , Feminino , Humanos , Hipercolesterolemia/microbiologia , Lipoproteínas LDL/sangue , Masculino , Ligação Proteica
3.
Cancer Res ; 76(9): 2612-25, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26941286

RESUMO

The progression from precursor lesions of pancreatic cancer, including pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasm (IPMN), to invasive disease is characterized by stepwise accumulation of genetic alterations. However, it remains unclear whether additional alterations are required for the progression of high-grade neoplasms to invasive pancreatic carcinoma. We compared the genomic profiles of paired noninvasive and invasive carcinoma tissues collected from patients with IPMN. We demonstrate that the frequency of genomic copy-number aberrations significantly increased during the course of invasion, and the loss of 8p11.22-ter was more often associated with invasive tissues. Expression profiling in pancreatic cancer cell lines with and without 8p11.22-ter revealed that DUSP4, an MAPK phosphatase, was significantly downregulated in cells lacking 8p11.22-ter as well as in invasive carcinomas due to genomic loss. Restoration of DUSP4 expression in pancreatic cancer cells significantly suppressed invasiveness and anoikis resistance via ERK inactivation. Accordingly, we found that blockade of ERK signaling by MEK inhibition was effective in an orthotopic xenograft model and significantly extended survival. Collectively, our findings demonstrate a genetic mechanism by which pancreatic precursor lesions progress to invasive carcinomas and highlight DUSP4 as a novel invasion suppressor that can be therapeutically exploited through manipulation of ERK signaling. Cancer Res; 76(9); 2612-25. ©2016 AACR.


Assuntos
Adenocarcinoma in Situ/patologia , Carcinoma Ductal Pancreático/patologia , Fosfatases de Especificidade Dupla/metabolismo , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Neoplasias Pancreáticas/patologia , Adenocarcinoma in Situ/genética , Adenocarcinoma Mucinoso/genética , Adenocarcinoma Mucinoso/mortalidade , Adenocarcinoma Mucinoso/patologia , Adenocarcinoma Papilar/genética , Adenocarcinoma Papilar/mortalidade , Adenocarcinoma Papilar/patologia , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/mortalidade , Hibridização Genômica Comparativa , Progressão da Doença , Fosfatases de Especificidade Dupla/genética , Xenoenxertos , Humanos , Estimativa de Kaplan-Meier , Camundongos , Microscopia Confocal , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Invasividade Neoplásica , Análise de Sequência com Séries de Oligonucleotídeos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/mortalidade , Transcriptoma
4.
J Pathol ; 239(1): 97-108, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26913567

RESUMO

We have previously reported that Salvador homologue 1 (SAV1), a component of the Hippo pathway, is significantly down-regulated in high-grade clear cell renal cell carcinoma (ccRCC) due to 14q copy number loss, and that this down-regulation contributes to the proliferation and survival of renal tubular epithelial cells through activation of Yes-associated protein 1 (YAP1), a downstream target of the Hippo pathway. However, the impact of SAV1 loss on the proliferation and survival of kidney cells in vivo remained to be determined. To address this issue, we generated kidney-specific Sav1-knockout (Cdh16-Cre;Sav1(fl/fl) ) mice. Sav1 deficiency enhanced the proliferation of renal tubular epithelial cells in Cdh16-Cre;Sav1(fl/fl) mice, accompanied by nuclear localization of Yap1, suggesting suppression of the Hippo pathway. Sav1 deficiency in renal tubules also caused structural and cellular abnormalities of the epithelial cells, including significant enlargement of their nuclei. Furthermore, Cdh16-Cre;Sav1(fl/fl) mice developed both glomerular and tubular cysts. Although lining cells of the glomerular cysts showed no atypia, those of the tubular cysts showed variations in cell size and nuclear shape, which became more severe as the mice aged. In aged Cdh16-Cre;Sav1(fl/fl) mice, we observed focal disruption of proximal tubules and perivascular lymphocytic infiltration. In conclusion, Sav1 is required for the maintenance of growth, nuclear size and structure of renal tubules under physiological conditions, and its deficiency leads to the acquisition of enhanced proliferation of renal epithelial cells through suppression of Hippo signalling.


Assuntos
Proteínas de Ciclo Celular/deficiência , Proliferação de Células/fisiologia , Túbulos Renais/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenocarcinoma de Células Claras/etiologia , Animais , Caderinas/metabolismo , Células-Tronco Embrionárias/metabolismo , Células Epiteliais/metabolismo , Via de Sinalização Hippo , Neoplasias Renais/etiologia , Camundongos Transgênicos , Nefrite/etiologia , Fosfoproteínas/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Sinalização YAP
5.
Cancer Sci ; 107(4): 417-23, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26790128

RESUMO

Previously, we reported that genomic loss of 14q occurs more frequently in high-grade than in low-grade clear cell renal cell carcinomas (ccRCCs), and has a significant impact on the levels of expression of genes located in this region, suggesting that such genes may be involved in the malignant transformation of ccRCCs. Here, we found that six of the genes located in the minimal common region of 14q loss were significantly downregulated in high-grade ccRCCs due to copy number loss. Using a dataset from The Cancer Genome Atlas Research Network, we found that downregulation of one of these six genes, WDR20, was significantly associated with poorer outcome in patients with ccRCC, suggesting that WDR20 downregulation may be involved in the malignant transformation of ccRCCs. In functional assays, exogenous WDR20 significantly inhibited the growth of RCC cell lines and induced apoptosis. Interestingly, the phosphorylation levels of ERK and protein kinase B/AKT, which reportedly contribute to the malignant phenotype of RCC cells, were clearly reduced by exogenous expression of WDR20. Thus, our data suggest that downregulation of WDR20 due to 14q loss may be involved in the malignant transformation of ccRCCs, in part through activation of the ERK and protein kinase B/AKT pathways.


Assuntos
Carcinoma de Células Renais/genética , Proteínas de Transporte/biossíntese , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Apoptose/genética , Carcinoma de Células Renais/patologia , Proteínas de Transporte/genética , Cromossomos Humanos Par 14 , Regulação Neoplásica da Expressão Gênica , Humanos , Sistema de Sinalização das MAP Quinases/genética , Proteína Oncogênica v-akt/genética
6.
Cereb Cortex ; 23(8): 1824-35, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22705452

RESUMO

Polypyrimidine tract-binding protein (PTB) is a well-characterized RNA-binding protein and known to be preferentially expressed in neural stem cells (NSCs) in the central nervous system; however, its role in NSCs in the developing brain remains unclear. To explore the role of PTB in embryonic NSCs in vivo, Nestin-Cre-mediated conditional Ptb knockout mice were generated for this study. In the mutant forebrain, despite the depletion of PTB protein, neither abnormal neurogenesis nor flagrant morphological abnormalities were observed at embryonic day 14.5 (E14.5). Nevertheless, by 10 weeks, nearly all mutant mice succumbed to hydrocephalus (HC), which was caused by a lack of the ependymal cell layer in the dorsal cortex. Upon further analysis, a gradual loss of adherens junctions (AJs) was observed in the ventricular zone (VZ) of the dorsal telencephalon in the mutant brains, beginning at E14.5. In the AJs-deficient VZ, impaired interkinetic nuclear migration and precocious differentiation of NSCs were observed after E14.5. These findings demonstrated that PTB depletion in the dorsal telencephalon is causally involved in the development of HC and that PTB is important for the maintenance of AJs in the NSCs of the dorsal telencephalon.


Assuntos
Junções Aderentes/ultraestrutura , Hidrocefalia/etiologia , Proteína de Ligação a Regiões Ricas em Polipirimidinas/fisiologia , Telencéfalo/embriologia , Animais , Hidrocefalia/genética , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neurais/ultraestrutura , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Telencéfalo/anormalidades
7.
Cell Cycle ; 10(21): 3706-13, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22037210

RESUMO

Polypyrimidine tract-binding protein (PTB/PTBP1/hnRNP I) is a member of the heterogeneous nuclear ribonucleoprotein family that binds specifically to pyrimidine-rich sequences of RNAs. Although PTB is a multifunctional protein involved in RNA processing and internal ribosome entry site (IRES)-dependent translation, the role of PTB in early mouse development is unclear. Ptb knockout mice exhibit embryonic lethality shortly after implantation and Ptb-/- embryonic stem (ES) cells have a severe proliferation defect that includes a prolonged G2/M phase. The present study shows that PTB promotes M phase progression by the direct repression of CDK11(p58) IRES activity in ES cells. The protein expression and IRES activity of CDK11(p58) in Ptb-/- ES cells is higher than that of wild-type ES cells, indicating that PTB is involved in the repression of CDK11(p58) expression through IRES-dependent translation in ES cells. Interestingly, CDK11(p58) IRES activity is activated by upstream of N-Ras (UNR) in 293T and NIH3T3 cells, whereas UNR is not present in the Cdk11 mRNA-protein complex in ES cells. In addition, PTB interacts directly with the IRES region of CDK11(p58) in ES cells. These results suggest that PTB regulates the precise expression of CDK11(p58) through direct interaction with CDK11(p58) IRES and promotes M phase progression in ES cells.


Assuntos
Ciclo Celular/fisiologia , Ciclina D3/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/fisiologia , Animais , Ciclina D3/fisiologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Camundongos , Biossíntese de Proteínas , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia , RNA Mensageiro/metabolismo , RNA Mensageiro/fisiologia
8.
Mol Cell Neurosci ; 46(3): 614-24, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21220025

RESUMO

Histone methylation is the important transcription regulatory system that affects mammalian development and cell differentiation. Alterations in epigenetic gene regulation are associated with disease. Fbxl10 (F-box and leucine-rich repeat protein 10) is a JmjC domain-containing histone demethylase. Although Fbxl10 has been implicated in cell cycle regulation, cell death, senescence, and tumorigenesis, these functions are controversial and its physiological function is unclear. To determine the in vivo function of Fbxl10, in this study, we generated a homozygous mutation in the mouse Fbxl10 gene. About half of Fbxl10-deficient mice exhibit failure of neural tube closure, resulting in exencephaly and die shortly after birth. Fbxl10 deficiency also causes retinal coloboma and a curled tail with low penetrances. Fbxl10 mRNA is specifically expressed in the cranial neural folds at E8.5 embryos, and apoptosis increased in the neuroepithelium and mesenchyme of Fbxl10-deficient E9.5 embryos, consistent with neural tube defects found in Fbxl10-deficient mice. Depletion of Fbxl10 induced the increased expression of p19ARF, an inducer of apoptosis, in E8.5 embryos and mouse embryonic fibroblast cells. In addition, the number of mitotic neural progenitor cells is significantly increased in the mutant E14.5 brain. Our findings suggest that the Fbxl10 gene makes important contributions to embryonic neural development by regulating cell proliferation and cell death in mice.


Assuntos
Morte Celular/fisiologia , Embrião de Mamíferos/anormalidades , Proteínas F-Box/genética , Histona Desmetilases com o Domínio Jumonji/genética , Células-Tronco Neurais/fisiologia , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/fisiopatologia , Animais , Diferenciação Celular , Proliferação de Células , Embrião de Mamíferos/anatomia & histologia , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Histona Desmetilases com o Domínio Jumonji/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Crista Neural , Células-Tronco Neurais/citologia , Defeitos do Tubo Neural/embriologia , Defeitos do Tubo Neural/patologia
9.
FEBS J ; 276(22): 6658-68, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19843185

RESUMO

Polypyrimidine tract-binding protein (PTB) is a widely expressed RNA-binding protein with multiple roles in RNA processing, including the splicing of alternative exons, mRNA stability, mRNA localization, and internal ribosome entry site-dependent translation. Although it has been reported that increased expression of PTB is correlated with cancer cell growth, the role of PTB in mammalian development is still unclear. Here, we report that a homozygous mutation in the mouse Ptb gene causes embryonic lethality shortly after implantation. We also established Ptb(-/-) embryonic stem (ES) cell lines and found that these mutant cells exhibited severe defects in cell proliferation without aberrant differentiation in vitro or in vivo. Furthermore, cell cycle analysis and a cell synchronization assay revealed that Ptb(-/-) ES cells have a prolonged G(2)/M phase. Thus, our data indicate that PTB is essential for early mouse development and ES cell proliferation.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Blastocisto/citologia , Blastocisto/metabolismo , Northern Blotting , Ciclo Celular/genética , Ciclo Celular/fisiologia , Proliferação de Células , Células Cultivadas , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética , Reação em Cadeia da Polimerase
10.
Cell Stem Cell ; 2(5): 461-71, 2008 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-18462696

RESUMO

The Notch signaling pathway plays important roles in cell-fate determination during embryonic development and adult life. In this study, we focus on the role of Notch signaling in governing cell-fate choices in human embryonic stem cells (hESCs). Using genetic and pharmacological approaches, we achieved both blockade and conditional activation of Notch signaling in several hESC lines. We report here that activation of Notch signaling is required for undifferentiated hESCs to form the progeny of all three embryonic germ layers, but not trophoblast cells. In addition, transient Notch signaling pathway activation enhanced generation of hematopoietic cells from committed hESCs. These new insights into the roles of Notch in hESC-fate determination may help to efficiently direct hESC differentiation into therapeutically relevant cell types.


Assuntos
Diferenciação Celular , Linhagem da Célula/fisiologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Camadas Germinativas/citologia , Camadas Germinativas/fisiologia , Receptores Notch/fisiologia , Trofoblastos/citologia , Trofoblastos/fisiologia , Adulto , Células Cultivadas , Dipeptídeos/administração & dosagem , Feminino , Vetores Genéticos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/fisiologia , Humanos , Lentivirus , Gravidez , Receptores Notch/antagonistas & inibidores , Transdução de Sinais , Transformação Genética
11.
Nature ; 449(7160): 351-5, 2007 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-17721509

RESUMO

During brain development, neurons and glia are generated from a germinal zone containing both neural stem cells (NSCs) and more limited intermediate neural progenitors (INPs). The signalling events that distinguish between these two proliferative neural cell types remain poorly understood. The Notch signalling pathway is known to maintain NSC character and to inhibit neurogenesis, although little is known about the role of Notch signalling in INPs. Here we show that both NSCs and INPs respond to Notch receptor activation, but that NSCs signal through the canonical Notch effector C-promoter binding factor 1 (CBF1), whereas INPs have attenuated CBF1 signalling. Furthermore, whereas knockdown of CBF1 promotes the conversion of NSCs to INPs, activation of CBF1 is insufficient to convert INPs back to NSCs. Using both transgenic and transient in vivo reporter assays we show that NSCs and INPs coexist in the telencephalic ventricular zone and that they can be prospectively separated on the basis of CBF1 activity. Furthermore, using in vivo transplantation we show that whereas NSCs generate neurons, astrocytes and oligodendrocytes at similar frequencies, INPs are predominantly neurogenic. Together with previous work on haematopoietic stem cells, this study suggests that the use or blockade of the CBF1 cascade downstream of Notch is a general feature distinguishing stem cells from more limited progenitors in a variety of tissues.


Assuntos
Neurônios/citologia , Neurônios/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/deficiência , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Células Cultivadas , Proteínas de Fluorescência Verde/metabolismo , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina , Camundongos , Telencéfalo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA