Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anim Sci J ; 92(1): e13604, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34309968

RESUMO

Peptide transporter 1 (PepT1) is a transporter responsible for absorbing dipeptide and tripeptide in enterocytes and is upregulated by dipeptide in mammals. It has not been certain whether intestinal PepT1 expression is responsive to dipeptides in chickens because of the lack of in vitro study using the cultured enterocytes. This study established a primary culture model of chicken intestinal epithelial cells (IECs) in two-dimensional monolayer culture using collagen gel by which the response of chicken PepT1 gene expression to dipeptide stimuli was evaluated. The cultured chicken IECs showed the epithelial-like morphology attached in a patch-manner and exhibited positive expression of cytokeratin and epithelial cadherin, specific marker proteins of epithelial cells. Moreover, the chicken IECs exhibited the gene expression of intestinal cell type-specific marker, villin1, mucin 2, and chromogranin A, suggesting that the cultured IECs were composed of enterocytes as well as goblet and enteroendocrine cells. PepT1 gene expression was significantly upregulated by synthetic dipeptide, glycyl-l-glutamine, in the cultured IECs. From the results, we herein suggested that dipeptide is a factor upregulating PepT1 gene expression in chicken IECs.


Assuntos
Galinhas , Dipeptídeos , Animais , Galinhas/genética , Galinhas/metabolismo , Dipeptídeos/metabolismo , Dipeptídeos/farmacologia , Células Epiteliais/metabolismo , Expressão Gênica , Proteínas de Membrana Transportadoras , Transportador 1 de Peptídeos/genética
2.
J Cell Physiol ; 234(2): 1080-1087, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30144363

RESUMO

Imprinted genes, which are specific to mammals, play important roles in cell proliferation, differentiation, ontogeny, and other phenomena. Moreover, these genes are considered crucial in the research of mammalian evolution. In the current study, we investigated the association between the expression of paternally imprinted gene paternally expressed 1/mesoderm-specific transcript (Peg1/Mest) and the maturation of the mammary gland. Quantitative real-time polymerase chain reaction analysis of Peg1/Mest gene expression at different stages of mouse mammary gland maturation revealed that its expression increased during gestation but decreased during lactation. Immunohistochemical staining demonstrated that Peg1/Mest was expressed in mammary epithelial cells. We measured expression levels of Peg1/Mest and E-cadherin during mammary alveoli formation using immunofluorescence staining a cell model for mammary alveoli formation in a 3D culture system. We found that the onset of E-cadherin expression roughly coincided with the peak of Peg1/Mest expression. Moreover, we discovered that the formation and proliferation of alveoli were suppressed in Peg1/Mest knockdown mammary epithelial cells. These results suggest that Peg1/Mest plays a certain role in mammary alveoli formation. To clarify the role of Peg1/Mest in the lactogenic differentiation of mammary epithelial cells, we examined the lactogenic differentiation capability of Peg1/Mest-overexpressing HC11 cells. Application of a differentiation-inducing stimulus did not increase ß-casein expression in Peg1/Mest-overexpressing HC11 cells. The current study for the first time reports the involvement of an imprinted gene in mammary gland maturation.


Assuntos
Diferenciação Celular/genética , Células Epiteliais , Impressão Genômica , Glândulas Mamárias Animais/crescimento & desenvolvimento , Proteínas/genética , Animais , Caderinas/genética , Caderinas/metabolismo , Caseínas/genética , Caseínas/metabolismo , Linhagem Celular , Células Epiteliais/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Glândulas Mamárias Animais/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Morfogênese , Polimorfismo de Nucleotídeo Único , Gravidez , Proteínas/metabolismo , Transdução de Sinais
3.
J Dairy Sci ; 101(4): 3568-3578, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29428758

RESUMO

The unfolded protein response (UPR) describes a process involved in the homeostasis of endoplasmic reticulum (ER) and the differentiation of secretory cells. At present, the roles of UPR in the mammary gland tissue of dairy cattle are unknown. In the current study, we investigated the expression of UPR-related genes in Holstein cows during the developmental and lactating stages of the mammary gland tissue. To investigate the roles of UPR during the differentiation of mammary epithelial cells (MEC), we used MAC-T cells, a line of MEC. We collected samples of mammary gland tissue in dairy cows by biopsy during the late gestation and lactation periods and examined the expression of UPR-related genes by quantitative real-time PCR. Expression levels of the spliced X-box binding protein 1 (XBP1) and activating transcription factor 4 (ATF4) were found to be significantly higher in the mammary gland tissue 10 d before delivery compared with 40 d before delivery. An investigation before and after differentiation in MAC-T cells showed that the expression of ATF4 increased after differentiation of MEC, whereas that of the spliced XBP1 did not significantly change. Western blot analysis revealed that the differentiation-inducing stimulus induced phosphorylation of eukaryotic initiation factor 2α (eIF2α) but reduced that of protein kinase RNA-like endoplasmic reticulum kinase (PERK). Additionally, in ATF4-knockdown bovine MEC, differentiation was significantly suppressed; ATF4 knockdown also significantly suppressed the expression of glucocorticoid and insulin receptors. These results revealed that ER stress-independent ATF4 is involved in the cell differentiation mechanism, either directly or indirectly, via the control of the expression of lactogenic hormone receptors in bovine MEC. Immediately after parturition, gene expression levels of the spliced XBP1, ATF4, and C/EBP homologous protein (CHOP) markedly increased in mammary gland tissue, with a strong negative correlation between expression of CHOP and initial milk yield; CHOP is an apoptosis-related protein induced by ER stress. The above findings indicate that UPR is intrinsically associated with apoptosis of MEC, thus affecting the differentiation of these cells, as well as milk yield.


Assuntos
Apoptose , Bovinos , Diferenciação Celular , Glândulas Mamárias Animais/citologia , Resposta a Proteínas não Dobradas , Animais , Estresse do Retículo Endoplasmático , Células Epiteliais/citologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Feminino , Lactação , Fosforilação , Gravidez , Fator de Transcrição CHOP , Proteína 1 de Ligação a X-Box/metabolismo
4.
Biochem Biophys Res Commun ; 484(4): 903-908, 2017 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-28189674

RESUMO

The accumulation of misfolded proteins in the ER provokes ER stress by increasing the demand for energy, chaperones, and other proteins that are needed to fold client proteins or to degrade unfoldable secretory cargo. This stress activates a signaling network called the unfolded protein response (UPR). However, recent accumulated data suggested that the UPR also provides important signals for regulating cell differentiation and maturation. However, the relationship between UPR and mammary gland development has not been fully elucidated. To define the involvement of the UPR in mammary gland development, mammary glands were collected from non-pregnant mice, at days 5, 10 and 15 of pregnancy, at days 1 and 7 of lactation, and the expression patterns of UPR-related genes were determined by real-time PCR. We found that the mRNA expression of ATF4 and XBP1 significant increased during pregnancy. Moreover, we found that both ATF4 and XBP1 proteins are expressed in mammary epithelial cells by immunohistological analysis. In order to know the role of ATF4 and XBP1 in the differentiation of mammary epithelial cell, we performed gene knockdown experiment using HC11 cells. We found that ATF4 or XBP1 knockdown suppressed the mRNA expression of beta-casein and lactogenic hormone receptor in differentiating HC11 cells. Our results demonstrate that XBP1 and ATF4, which are UPR-related transcription factors, directly or indirectly participate in cell differentiation mechanisms through the regulation of the expression of lactogenic hormone receptors in mouse mammary epithelial cells.


Assuntos
Células Epiteliais/citologia , Células Epiteliais/fisiologia , Glândulas Mamárias Humanas/citologia , Glândulas Mamárias Humanas/fisiologia , Prenhez/fisiologia , Resposta a Proteínas não Dobradas/fisiologia , Animais , Diferenciação Celular , Estresse do Retículo Endoplasmático/fisiologia , Feminino , Humanos , Camundongos , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA