Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oxf Open Neurosci ; 3: kvae001, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38595939

RESUMO

PRDM16 is a dynamic transcriptional regulator of various stem cell niches, including adipocytic, hematopoietic, cardiac progenitors, and neural stem cells. PRDM16 has been suggested to contribute to 1p36 deletion syndrome, one of the most prevalent subtelomeric microdeletion syndromes. We report a patient with a de novo nonsense mutation in the PRDM16 coding sequence, accompanied by lissencephaly and microcephaly features. Human stem cells were genetically modified to mimic this mutation, generating cortical organoids that exhibited altered cell cycle dynamics. RNA sequencing of cortical organoids at day 32 unveiled changes in cell adhesion and WNT-signaling pathways. ChIP-seq of PRDM16 identified binding sites in postmortem human fetal cortex, indicating the conservation of PRDM16 binding to developmental genes in mice and humans, potentially at enhancer sites. A shared motif between PRDM16 and LHX2 was identified and further examined through comparison with LHX2 ChIP-seq data from mice. These results suggested a collaborative partnership between PRDM16 and LHX2 in regulating a common set of genes and pathways in cortical radial glia cells, possibly via their synergistic involvement in cortical development.

2.
bioRxiv ; 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37609127

RESUMO

PRDM16 is a dynamic transcriptional regulator of various stem cell niches, including adipocytic, hematopoietic, cardiac progenitors, and neural stem cells. PRDM16 has been suggested to contribute to 1p36 deletion syndrome, one of the most prevalent subtelomeric microdeletion syndromes. We report a patient with a de novo nonsense mutation in the PRDM16 coding sequence, accompanied by lissencephaly and microcephaly features. Human stem cells were genetically modified to mimic this mutation, generating cortical organoids that exhibited altered cell cycle dynamics. RNA sequencing of cortical organoids at day 32 unveiled changes in cell adhesion and WNT-signaling pathways. ChIP-seq of PRDM16 identified binding sites in postmortem human fetal cortex, indicating the conservation of PRDM16 binding to developmental genes in mice and humans, potentially at enhancer sites. A shared motif between PRDM16 and LHX2 was identified and further examined through comparison with LHX2 ChIP-seq data from mice. These results suggested a collaborative partnership between PRDM16 and LHX2 in regulating a common set of genes and pathways in cortical radial glia cells, possibly via their synergistic involvement in cortical development.

3.
Cereb Cortex ; 27(5): 2841-2856, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27178193

RESUMO

A unique population of cells, called "lot cells," circumscribes the path of the lateral olfactory tract (LOT) in the rodent brain and acts to restrict its position at the lateral margin of the telencephalon. Lot cells were believed to originate in the dorsal pallium (DP). We show that Lhx2 null mice that lack a DP show a significant increase in the number of mGluR1/lot cells in the piriform cortex, indicating a non-DP origin of these cells. Since lot cells present common developmental features with Cajal-Retzius (CR) cells, we analyzed Wnt3a- and Dbx1-reporter mouse lines and found that mGluR1/lot cells are not generated in the cortical hem, ventral pallium, or septum, the best characterized sources of CR cells. Finally, we identified a novel origin for the lot cells by combining in utero electroporation assays and histochemical characterization. We show that mGluR1/lot cells are specifically generated in the lateral thalamic eminence and that they express mitral cell markers, although a minority of them express ΔNp73 instead. We conclude that most mGluR1/lot cells are prospective mitral cells migrating to the accessory olfactory bulb (OB), whereas mGluR1+, ΔNp73+ cells are CR cells that migrate through the LOT to the piriform cortex and the OB.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Receptores de Glutamato Metabotrópico/metabolismo , Células-Tronco/fisiologia , Tálamo/citologia , Tálamo/metabolismo , Animais , Movimento Celular , Células Cultivadas , Embrião de Mamíferos , Feminino , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/fisiologia , Gravidez , Receptores de Glutamato Metabotrópico/genética , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Tumoral p73/genética , Proteína Tumoral p73/metabolismo
4.
Nat Neurosci ; 16(2): 157-65, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23292680

RESUMO

The accessory olfactory bulb (AOB) is a critical olfactory structure that has been implicated in mediating social behavior. It receives input from the vomeronasal organ and projects to targets in the amygdaloid complex. Its anterior and posterior components (aAOB and pAOB) display molecular, connectional and functional segregation in processing reproductive and defensive and aggressive behaviors, respectively. We observed a dichotomy in the development of the projection neurons of the aAOB and pAOB in mice. We found that they had distinct sites of origin and that different regulatory molecules were required for their specification and migration. aAOB neurons arose locally in the rostral telencephalon, similar to main olfactory bulb neurons. In contrast, pAOB neurons arose caudally, from the neuroepithelium of the diencephalic-telencephalic boundary, from which they migrated rostrally to reach their destination. This unusual origin and migration is conserved in Xenopus, providing an insight into the origin of a key component of this system in evolution.


Assuntos
Vias Aferentes/fisiologia , Evolução Biológica , Movimento Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Neurônios/fisiologia , Bulbo Olfatório , Fatores Etários , Animais , Animais Recém-Nascidos , Bromodesoxiuridina/metabolismo , Quinase 5 Dependente de Ciclina/genética , Quinase 5 Dependente de Ciclina/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Diencéfalo/citologia , Diencéfalo/fisiologia , Eletroporação/métodos , Embrião de Mamíferos , Feminino , Proteínas Luminescentes/genética , Masculino , Camundongos , Camundongos Transgênicos , Microinjeções/métodos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares , Bulbo Olfatório/citologia , Bulbo Olfatório/embriologia , Bulbo Olfatório/crescimento & desenvolvimento , Oócitos , Técnicas de Cultura de Órgãos , Gravidez , Telencéfalo/citologia , Telencéfalo/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Tumoral p73 , Proteínas Supressoras de Tumor , Órgão Vomeronasal/citologia , Órgão Vomeronasal/embriologia , Órgão Vomeronasal/crescimento & desenvolvimento , Xenopus
5.
J Neurosci ; 30(27): 9127-39, 2010 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-20610746

RESUMO

The balance between self-renewal and differentiation of neural progenitor cells is an absolute requirement for the correct formation of the nervous system. Much is known about both the pathways involved in progenitor cell self-renewal, such as Notch signaling, and the expression of genes that initiate progenitor differentiation. However, whether these fundamental processes are mechanistically linked, and specifically how repression of progenitor self-renewal pathways occurs, is poorly understood. Nuclear factor I A (Nfia), a gene known to regulate spinal cord and neocortical development, has recently been implicated as acting downstream of Notch to initiate the expression of astrocyte-specific genes within the cortex. Here we demonstrate that, in addition to activating the expression of astrocyte-specific genes, Nfia also downregulates the activity of the Notch signaling pathway via repression of the key Notch effector Hes1. These data provide a significant conceptual advance in our understanding of neural progenitor differentiation, revealing that a single transcription factor can control both the activation of differentiation genes and the repression of the self-renewal genes, thereby acting as a pivotal regulator of the balance between progenitor and differentiated cell states.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição NFI/fisiologia , Células-Tronco/fisiologia , Telencéfalo/citologia , Fatores Etários , Análise de Variância , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Bromodesoxiuridina/metabolismo , Contagem de Células/métodos , Ventrículos Cerebrais/citologia , Ventrículos Cerebrais/embriologia , Imunoprecipitação da Cromatina/métodos , Ensaio de Desvio de Mobilidade Eletroforética/métodos , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento/genética , Hipocampo/citologia , Hipocampo/crescimento & desenvolvimento , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise em Microsséries/métodos , Mutação/genética , Fatores de Transcrição NFI/deficiência , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fator 6 de Transcrição de Octâmero/genética , Fator 6 de Transcrição de Octâmero/metabolismo , Regiões Promotoras Genéticas/fisiologia , Receptores de Ácido Caínico/genética , Receptores de Ácido Caínico/metabolismo , Telencéfalo/embriologia , Fatores de Transcrição HES-1 , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
6.
J Neurosci ; 28(37): 9145-50, 2008 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-18784295

RESUMO

Neurons acquire their molecular, neurochemical, and connectional features during development as a result of complex regulatory mechanisms. Here, we show that a ubiquitous, multifunctional protein cofactor, Chip, plays a critical role in a set of neurons in Drosophila that control the well described posteclosion behavior. Newly eclosed flies normally expand their wings and display tanning and hardening of their cuticle. Using multiple approaches to interfere with Chip function, we find that these processes do not occur without normal activity of this protein. Furthermore, we identified the nature of the deficit to be an absence of Bursicon in the hemolymph of newly eclosed flies, whereas the responsivity to Bursicon in these flies remains normal. Chip interacts with transcription factors of the LIM-HD (LIM-homeodomain) family, and we identified one member, dIslet, as a potential partner of Chip in this process. Our findings provide the first evidence of transcriptional mechanisms involved in the development of the neuronal circuit that regulates posteclosion behavior in Drosophila.


Assuntos
Comportamento Animal/fisiologia , Proteínas de Drosophila/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas Nucleares/fisiologia , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo , 8-Bromo Monofosfato de Adenosina Cíclica/farmacologia , Animais , Animais Geneticamente Modificados , Comportamento Animal/efeitos dos fármacos , Calcitonina/metabolismo , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Hemolinfa/metabolismo , Hormônios de Invertebrado/metabolismo , Proteínas Nucleares/genética , Fragmentos de Peptídeos/metabolismo , RNA Interferente Pequeno/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA