Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Virol ; 96(2): e0106321, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34669512

RESUMO

COVID-19 affects multiple organs. Clinical data from the Mount Sinai Health System show that substantial numbers of COVID-19 patients without prior heart disease develop cardiac dysfunction. How COVID-19 patients develop cardiac disease is not known. We integrated cell biological and physiological analyses of human cardiomyocytes differentiated from human induced pluripotent stem cells (hiPSCs) infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the presence of interleukins (ILs) with clinical findings related to laboratory values in COVID-19 patients to identify plausible mechanisms of cardiac disease in COVID-19 patients. We infected hiPSC-derived cardiomyocytes from healthy human subjects with SARS-CoV-2 in the absence and presence of IL-6 and IL-1ß. Infection resulted in increased numbers of multinucleated cells. Interleukin treatment and infection resulted in disorganization of myofibrils, extracellular release of troponin I, and reduced and erratic beating. Infection resulted in decreased expression of mRNA encoding key proteins of the cardiomyocyte contractile apparatus. Although interleukins did not increase the extent of infection, they increased the contractile dysfunction associated with viral infection of cardiomyocytes, resulting in cessation of beating. Clinical data from hospitalized patients from the Mount Sinai Health System show that a significant portion of COVID-19 patients without history of heart disease have elevated troponin and interleukin levels. A substantial subset of these patients showed reduced left ventricular function by echocardiography. Our laboratory observations, combined with the clinical data, indicate that direct effects on cardiomyocytes by interleukins and SARS-CoV-2 infection might underlie heart disease in COVID-19 patients. IMPORTANCE SARS-CoV-2 infects multiple organs, including the heart. Analyses of hospitalized patients show that a substantial number without prior indication of heart disease or comorbidities show significant injury to heart tissue, assessed by increased levels of troponin in blood. We studied the cell biological and physiological effects of virus infection of healthy human iPSC-derived cardiomyocytes in culture. Virus infection with interleukins disorganizes myofibrils, increases cell size and the numbers of multinucleated cells, and suppresses the expression of proteins of the contractile apparatus. Viral infection of cardiomyocytes in culture triggers release of troponin similar to elevation in levels of COVID-19 patients with heart disease. Viral infection in the presence of interleukins slows down and desynchronizes the beating of cardiomyocytes in culture. The cell-level physiological changes are similar to decreases in left ventricular ejection seen in imaging of patients' hearts. These observations suggest that direct injury to heart tissue by virus can be one underlying cause of heart disease in COVID-19.


Assuntos
COVID-19/imunologia , Células-Tronco Pluripotentes Induzidas , Interleucina-10/imunologia , Interleucina-1beta/imunologia , Interleucina-6/imunologia , Miócitos Cardíacos , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/imunologia , Células-Tronco Pluripotentes Induzidas/patologia , Células-Tronco Pluripotentes Induzidas/virologia , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/patologia , Miócitos Cardíacos/virologia
2.
Mol Oncol ; 13(8): 1725-1743, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31116490

RESUMO

The ability to predict responsiveness to drugs in individual patients is limited. We hypothesized that integrating molecular information from databases would yield predictions that could be experimentally tested to develop transcriptomic signatures for specific drugs. We analyzed lung adenocarcinoma patient data from The Cancer Genome Atlas and identified a subset of patients in which xanthine dehydrogenase (XDH) expression correlated with decreased survival. We tested allopurinol, an FDA-approved drug that inhibits XDH, on human non-small-cell lung cancer (NSCLC) cell lines obtained from the Broad Institute Cancer Cell Line Encyclopedia and identified sensitive and resistant cell lines. We utilized the transcriptomic profiles of these cell lines to identify six-gene signatures for allopurinol-sensitive and allopurinol-resistant cell lines. Transcriptomic networks identified JAK2 as an additional target in allopurinol-resistant lines. Treatment of resistant cell lines with allopurinol and CEP-33779 (a JAK2 inhibitor) resulted in cell death. The effectiveness of allopurinol alone or allopurinol and CEP-33779 was verified in vivo using tumor formation in NCR-nude mice. We utilized the six-gene signatures to predict five additional allopurinol-sensitive NSCLC cell lines and four allopurinol-resistant cell lines susceptible to combination therapy. We searched the transcriptomic data from a library of patient-derived NSCLC tumors from the Jackson Laboratory to identify tumors that would be predicted to be sensitive to allopurinol or allopurinol + CEP-33779 treatment. Patient-derived tumors showed the predicted drug sensitivity in vivo. These data indicate that we can use integrated molecular information from cancer databases to predict drug responsiveness in individual patients and thus enable precision medicine.


Assuntos
Alopurinol/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Genômica , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Análise de Sistemas , Alopurinol/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/metabolismo , Neoplasias Pulmonares/patologia , Camundongos Nus , Fenótipo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/farmacologia , Piridinas/uso terapêutico , Triazóis/farmacologia , Triazóis/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
3.
J Neurosci ; 36(34): 8936-46, 2016 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-27559174

RESUMO

UNLABELLED: Alterations in cAMP signaling are thought to contribute to neurocognitive and neuropsychiatric disorders. Members of the cAMP-specific phosphodiesterase 4 (PDE4) family, which contains >25 different isoforms, play a key role in determining spatial cAMP degradation so as to orchestrate compartmentalized cAMP signaling in cells. Each isoform binds to a different set of protein complexes through its unique N-terminal domain, thereby leading to targeted degradation of cAMP in specific intracellular compartments. However, the functional role of specific compartmentalized PDE4 isoforms has not been examined in vivo Here, we show that increasing protein levels of the PDE4A5 isoform in mouse hippocampal excitatory neurons impairs a long-lasting form of hippocampal synaptic plasticity and attenuates hippocampus-dependent long-term memories without affecting anxiety. In contrast, viral expression of a truncated version of PDE4A5, which lacks the unique N-terminal targeting domain, does not affect long-term memory. Further, overexpression of the PDE4A1 isoform, which targets a different subset of signalosomes, leaves memory undisturbed. Fluorescence resonance energy transfer sensor-based cAMP measurements reveal that the full-length PDE4A5, in contrast to the truncated form, hampers forskolin-mediated increases in neuronal cAMP levels. Our study indicates that the unique N-terminal localization domain of PDE4A5 is essential for the targeting of specific cAMP-dependent signaling underlying synaptic plasticity and memory. The development of compounds to disrupt the compartmentalization of individual PDE4 isoforms by targeting their unique N-terminal domains may provide a fruitful approach to prevent cognitive deficits in neuropsychiatric and neurocognitive disorders that are associated with alterations in cAMP signaling. SIGNIFICANCE STATEMENT: Neurons exhibit localized signaling processes that enable biochemical cascades to be activated selectively in specific subcellular compartments. The phosphodiesterase 4 (PDE4) family coordinates the degradation of cAMP, leading to the local attenuation of cAMP-dependent signaling pathways. Sleep deprivation leads to increased hippocampal expression of the PDE4A5 isoform. Here, we explored whether PDE4A5 overexpression mimics behavioral and synaptic plasticity phenotypes associated with sleep deprivation. Viral expression of PDE4A5 in hippocampal neurons impairs long-term potentiation and attenuates the formation of hippocampus-dependent long-term memories. Our findings suggest that PDE4A5 is a molecular constraint on cognitive processes and may contribute to the development of novel therapeutic approaches to prevent cognitive deficits in neuropsychiatric and neurocognitive disorders that are associated with alterations in cAMP signaling.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Hipocampo/citologia , Hipocampo/fisiologia , Memória de Longo Prazo/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Análise de Variância , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Células Cultivadas , Colforsina/farmacologia , Condicionamento Clássico/fisiologia , AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Estimulação Elétrica , Ensaio de Imunoadsorção Enzimática , Medo , Transferência Ressonante de Energia de Fluorescência , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratos , Reconhecimento Psicológico/fisiologia , Transdução de Sinais/genética , Transdução Genética , Vasodilatadores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA