Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Front Immunol ; 15: 1328306, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590528

RESUMO

CD39 is the major enzyme controlling the levels of extracellular adenosine triphosphate (ATP) via the stepwise hydrolysis of ATP to adenosine diphosphate (ADP) and adenosine monophosphate (AMP). As extracellular ATP is a strong promoter of inflammation, monoclonal antibodies (mAbs) blocking CD39 are utilized therapeutically in the field of immune-oncology. Though anti-CD39 mAbs are highly specific for their target, they lack deep penetration into the dense tissue of solid tumors, due to their large size. To overcome this limitation, we generated and characterized nanobodies that targeted and blocked human CD39. From cDNA-immunized alpacas we selected 16 clones from seven nanobody families that bind to two distinct epitopes of human CD39. Among these, clone SB24 inhibited the enzymatic activity of CD39. Of note, SB24 blocked ATP degradation by both soluble and cell surface CD39 as a 15kD monomeric nanobody. Dimerization via fusion to an immunoglobulin Fc portion further increased the blocking potency of SB24 on CD39-transfected HEK cells. Finally, we confirmed the CD39 blocking properties of SB24 on human PBMCs. In summary, SB24 provides a new small biological antagonist of human CD39 with potential application in cancer therapy.


Assuntos
Anticorpos de Domínio Único , Humanos , Anticorpos de Domínio Único/farmacologia , Trifosfato de Adenosina/metabolismo , Monofosfato de Adenosina , Difosfato de Adenosina/metabolismo
2.
Front Immunol ; 15: 1362996, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426088

RESUMO

An increase in the extracellular concentration of ATP as a consequence of cellular stress or cell death results in the activation of immune cells. To prevent inflammation, extracellular ATP is rapidly metabolized to adenosine, which deploys an anti-inflammatory signaling cascade upon binding to P1 receptors on immune cells. The ectonucleotidases necessary for the degradation of ATP and generation of adenosine are present on the cell membrane of many immune cells, and their expression is tightly regulated under conditions of inflammation. The discovery that extracellular vesicles (EVs) carry purinergic enzyme activity has brought forward the concept of EVs as a new player in immune regulation. Adenosine-generating EVs derived from cancer cells suppress the anti-tumor response, while EVs derived from immune or mesenchymal stem cells contribute to the restoration of homeostasis after infection. Here we will review the existing knowledge on EVs containing purinergic enzymes and molecules, and discuss the relevance of these EVs in immune modulation and their potential for therapy.


Assuntos
Adenosina , Vesículas Extracelulares , Humanos , Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Imunidade , Vesículas Extracelulares/metabolismo , Inflamação
3.
J Clin Immunol ; 44(3): 69, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393459

RESUMO

Congenital heart disease (CHD) is the most common birth defect, and up to 50% of infants with CHD require cardiovascular surgery early in life. Current clinical practice often involves thymus resection during cardiac surgery, detrimentally affecting T-cell immunity. However, epidemiological data indicate that CHD patients face an elevated risk for infections and immune-mediated diseases, independent of thymectomy. Hence, we examined whether the cardiac defect impacts thymus function in individuals with CHD. We investigated thymocyte development in 58 infants categorized by CHD complexity. To assess the relationship between CHD complexity and thymic function, we analyzed T-cell development, thymic output, and biomarkers linked to cardiac defects, stress, or inflammation. Patients with highly complex CHD exhibit thymic atrophy, resulting in low frequencies of recent thymic emigrants in peripheral blood, even prior to thymectomy. Elevated plasma cortisol levels were detected in all CHD patients, while high NT-proBNP and IL-6 levels were associated with thymic atrophy. Our findings reveal an association between complex CHD and thymic atrophy, resulting in reduced thymic output. Consequently, thymus preservation during cardiovascular surgery could significantly enhance immune function and the long-term health of CHD patients.


Assuntos
Cardiopatias Congênitas , Timo , Lactente , Humanos , Linfócitos T , Cardiopatias Congênitas/cirurgia , Cardiopatias Congênitas/patologia , Atrofia/patologia
4.
Int J Mol Sci ; 24(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37511518

RESUMO

The search for new and effective treatment targets for cancer immunotherapy is an ongoing challenge. Alongside the more established inhibitory immune checkpoints, a novel potential target is CD73. As one of the key enzymes in the purinergic signalling pathway CD73 is responsible for the generation of immune suppressive adenosine. The expression of CD73 is higher in tumours than in the corresponding healthy tissues and associated with a poor prognosis. CD73, mainly by the production of adenosine, is critical in the suppression of an adequate anti-tumour immune response, but also in promoting cancer cell proliferation, tumour growth, angiogenesis, and metastasis. The upregulation of CD73 and generation of adenosine by tumour or tumour-associated immune cells is a common resistance mechanism to many cancer treatments such as chemotherapy, radiotherapy, targeted therapy, and immunotherapy. Therefore, the inhibition of CD73 represents a new and promising approach to increase therapy efficacy. Several CD73 inhibitors have already been developed and successfully demonstrated anti-cancer activity in preclinical studies. Currently, clinical studies evaluate CD73 inhibitors in different therapy combinations and tumour entities. The initial results suggest that inhibiting CD73 could be an effective option to augment anti-cancer immunotherapeutic strategies. This review provides an overview of the rationale behind the CD73 inhibition in different treatment combinations and the role of CD73 as a prognostic marker.


Assuntos
Relevância Clínica , Neoplasias , Humanos , 5'-Nucleotidase/metabolismo , Adenosina/metabolismo , Terapia de Imunossupressão , Imunoterapia/métodos , Neoplasias/patologia
5.
Semin Immunopathol ; 45(3): 347-365, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36917241

RESUMO

In ischemic stroke, the primary neuronal injury caused by the disruption of energy supply is further exacerbated by secondary sterile inflammation. The inflammatory cascade is largely initiated by the purine adenosine triphosphate (ATP) which is extensively released to the interstitial space during brain ischemia and functions as an extracellular danger signaling molecule. By engaging P2 receptors, extracellular ATP activates microglia leading to cytokine and chemokine production and subsequent immune cell recruitment from the periphery which further amplifies post-stroke inflammation. The ectonucleotidases CD39 and CD73 shape and balance the inflammatory environment by stepwise degrading extracellular ATP to adenosine which itself has neuroprotective and anti-inflammatory signaling properties. The neuroprotective effects of adenosine are mainly mediated through A1 receptors and inhibition of glutamatergic excitotoxicity, while the anti-inflammatory capacities of adenosine have been primarily attributed to A2A receptor activation on infiltrating immune cells in the subacute phase after stroke. In this review, we summarize the current state of knowledge on the ATP-adenosine axis in ischemic stroke, discuss contradictory results, and point out potential pitfalls towards translating therapeutic approaches from rodent stroke models to human patients.


Assuntos
Trifosfato de Adenosina , AVC Isquêmico , Humanos , Adenosina , Inflamação , Transdução de Sinais
6.
Cancers (Basel) ; 15(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36831616

RESUMO

Tumor plasticity is essential for adaptation to changing environmental conditions, in particular during the process of metastasis. In this study, we compared morphological and biochemical differences between LAN-1 neuroblastoma (NB) cells recovered from a subcutaneous xenograft primary tumor (PT) and the corresponding three generations of bone metastasis (BM I-III). Moreover, growth behavior, as well as the response to chemotherapy and immune cells were assessed. For this purpose, F-actin was stained, mRNA and protein expression assessed, and lactate secretion analyzed. Further, we measured adhesion to collagen I, the growth rate of spheroids in the presence and absence of vincristine, and the production of IL-6 by peripheral blood mononuclear cells (PBMCs) co-incubated with PT or BM I-III. Analysis of PT and the three BM generations revealed that their growth rate decreased from PT to BM III, and accordingly, PT cells reacted most sensitively to vincristine. In addition, morphology, adaption to hypoxic conditions, as well as transcriptomes showed strong differences between the cell lines. Moreover, BM I and BM II cells exhibited a significantly different ability to stimulate human immune cells compared to PT and BM III cells. Interestingly, the differences in immune cell stimulation corresponded to the expression level of the cancer-testis antigen MAGE-A3. In conclusion, our ex vivo model allows to analyze the adaption of tumor populations to different microenvironments and clearly demonstrates the strong alteration of tumor cell populations during this process.

7.
Arch Immunol Ther Exp (Warsz) ; 71(1): 1, 2022 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-36528821

RESUMO

Hematopoietic stem cell (HSC) transplantation is crucial to cure hematologic malignancies. Umbilical cord blood (UCB) is a source of stem cells, but 90% of UCB units are discarded due to low cellularity. Improving the engraftment capacities of CD34+ stem cells would allow the use of UCB that were so far rejected. Betamethasone induces long-term transcriptomic and epigenomic changes in immune cells through glucocorticoid receptor. We hypothesize that discarded UCB could be used owing to improvements induced by betamethasone. Isolated CD34+ HSC from UCB were exposed to the synthetic glucocorticoids betamethasone and fluticasone for 20 h, and cell phenotype was determined before transplantation. NSG mice were sub-lethally irradiated (1 Gy or 2 Gy) 6 h before intravenously transferring 2-5 × 105 CD34+ HSC. The peripheral blood engraftment levels and the leukocyte subsets were followed up for 20 weeks using flow cytometry. At end point, the engraftment and leukocyte subsets were determined in the spleen and bone marrow. We demonstrated that betamethasone has surprising effects in recovering immune system homeostasis. Betamethasone and fluticasone increase CXCR4 and decrease HLA class II and CD54 expression in CD34+ HSCs. Both glucocorticoids-exposed cells showed a similar engraftment in 2 Gy-irradiated NSG mice. Interestingly, betamethasone-exposed cells showed enhanced engraftment in 1 Gy-irradiated NSG mice, with a trend to increase regulatory T cell percentage when compared to control. Betamethasone induces alterations in CD34+ HSCs and improve the engraftment, leading to a faster immune system recovery, which will contribute to engrafted cells survival.


Assuntos
Transplante de Células-Tronco de Sangue do Cordão Umbilical , Transplante de Células-Tronco Hematopoéticas , Camundongos , Animais , Sangue Fetal , Camundongos SCID , Camundongos Endogâmicos NOD , Betametasona/uso terapêutico , Glucocorticoides/farmacologia , Glucocorticoides/uso terapêutico , Antígenos CD34 , Células-Tronco Hematopoéticas , Fluticasona
8.
J Neuroinflammation ; 19(1): 256, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224611

RESUMO

BACKGROUND: Previous studies have demonstrated that purinergic receptors could be therapeutic targets to modulate the inflammatory response in multiple models of brain diseases. However, tools for the selective and efficient targeting of these receptors are lacking. The development of new P2X7-specific nanobodies (nbs) has enabled us to effectively block the P2X7 channel. METHODS: Temporary middle cerebral artery occlusion (tMCAO) in wild-type (wt) and P2X7 transgenic (tg) mice was used to model ischemic stroke. Adenosine triphosphate (ATP) release was assessed in transgenic ATP sensor mice. Stroke size was measured after P2X7-specific nbs were injected intravenously (iv) and intracerebroventricularly (icv) directly before tMCAO surgery. In vitro cultured microglia were used to investigate calcium influx, pore formation via 4,6-diamidino-2-phenylindole (DAPI) uptake, caspase 1 activation and interleukin (IL)-1ß release after incubation with the P2X7-specific nbs. RESULTS: Transgenic ATP sensor mice showed an increase in ATP release in the ischemic hemisphere compared to the contralateral hemisphere or the sham-treated mice up to 24 h after stroke. P2X7-overexpressing mice had a significantly greater stroke size 24 h after tMCAO surgery. In vitro experiments with primary microglial cells demonstrated that P2X7-specific nbs could inhibit ATP-triggered calcium influx and the formation of membrane pores, as measured by Fluo4 fluorescence or DAPI uptake. In microglia, we found lower caspase 1 activity and subsequently lower IL-1ß release after P2X7-specific nb treatment. The intravenous injection of P2X7-specific nbs compared to isotype controls before tMCAO surgery did not result in a smaller stroke size. As demonstrated by fluorescence-activated cell sorting (FACS), after stroke, iv injected nbs bound to brain-infiltrated macrophages but not to brain resident microglia, indicating insufficient crossing of the blood-brain barrier of the nbs. Therefore, we directly icv injected the P2X7-specific nbs or the isotype nbs. After icv injection of 30 µg of P2X7 specific nbs, P2X7 specific nbs bound sufficiently to microglia and reduced stroke size. CONCLUSION: Mechanistically, we can show that there is a substantial increase of ATP locally after stroke and that blockage of the ATP receptor P2X7 by icv injected P2X7-specific nbs can reduce ischemic tissue damage.


Assuntos
Receptores Purinérgicos P2 , Anticorpos de Domínio Único , Acidente Vascular Cerebral , Trifosfato de Adenosina/farmacologia , Animais , Cálcio/metabolismo , Caspase 1/metabolismo , Infarto da Artéria Cerebral Média/patologia , Interleucina-1beta/metabolismo , Camundongos , Microglia/metabolismo , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Anticorpos de Domínio Único/metabolismo , Acidente Vascular Cerebral/metabolismo
9.
Eur J Immunol ; 52(11): 1805-1818, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36178227

RESUMO

Extracellular ATP activates the P2X7 receptor, leading to inflammasome activation and release of pro-inflammatory cytokines in monocytes. However, a detailed analysis of P2X7 receptor expression and function in the human T cell compartment has not been reported. Here, we used a P2X7-specific nanobody to assess cell membrane expression and function of P2X7 on peripheral T lymphocyte subsets. The results show that innate-like T cells, which effectively react to innate stimuli by secreting high amounts of pro-inflammatory cytokines, have the highest expression of P2X7 in the human T cell compartment. Using Tγδ cells as example for an innate-like lymphocyte population, we demonstrate that these cells are more sensitive to P2X7 receptor activation than conventional T cells, affecting fundamental cellular mechanisms like calcium signaling and ATP-induced cell death. The increased susceptibility of innate-like T cells to P2X7-mediated cell death provides a mechanism to control their homeostasis under inflammatory conditions. Understanding the expression and function of P2X7 on human immune cells is essential to assume the benefits and consequences of newly developed P2X7-based therapeutic approaches.


Assuntos
Trifosfato de Adenosina , Receptores Purinérgicos P2X7 , Humanos , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Trifosfato de Adenosina/metabolismo , Morte Celular , Monócitos/metabolismo , Citocinas/metabolismo
10.
J Immunother Cancer ; 10(8)2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35981785

RESUMO

BACKGROUND: An important mechanism, by which cancer cells achieve immune escape, is the release of extracellular adenosine into their microenvironment. Adenosine activates adenosine A2A and A2B receptors on immune cells constituting one of the strongest immunosuppressive mediators. In addition, extracellular adenosine promotes angiogenesis, tumor cell proliferation, and metastasis. Cancer cells upregulate ectonucleotidases, most importantly CD39 and CD73, which catalyze the hydrolysis of extracellular ATP to AMP (CD39) and further to adenosine (CD73). Inhibition of CD39 is thus expected to be an effective strategy for the (immuno)therapy of cancer. However, suitable small molecule inhibitors for CD39 are not available. Our aim was to identify drug-like CD39 inhibitors and evaluate them in vitro. METHODS: We pursued a repurposing approach by screening a self-compiled collection of approved, mostly ATP-competitive protein kinase inhibitors, on human CD39. The best hit compound was further characterized and evaluated in various orthogonal assays and enzyme preparations, and on human immune and cancer cells. RESULTS: The tyrosine kinase inhibitor ceritinib, a potent anticancer drug used for the treatment of anaplastic lymphoma kinase (ALK)-positive metastatic non-small cell lung cancer, was found to strongly inhibit CD39 showing selectivity versus other ectonucleotidases. The drug displays a non-competitive, allosteric mechanism of CD39 inhibition exhibiting potency in the low micromolar range, which is independent of substrate (ATP) concentration. We could show that ceritinib inhibits ATP dephosphorylation in peripheral blood mononuclear cells in a dose-dependent manner, resulting in a significant increase in ATP concentrations and preventing adenosine formation from ATP. Importantly, ceritinib (1-10 µM) substantially inhibited ATP hydrolysis in triple negative breast cancer and melanoma cells with high native expression of CD39. CONCLUSIONS: CD39 inhibition might contribute to the effects of the powerful anticancer drug ceritinib. Ceritinib is a novel CD39 inhibitor with high metabolic stability and optimized physicochemical properties; according to our knowledge, it is the first brain-permeant CD39 inhibitor. Our discovery will provide the basis (i) to develop more potent and balanced dual CD39/ALK inhibitors, and (ii) to optimize the ceritinib scaffold towards interaction with CD39 to obtain potent and selective drug-like CD39 inhibitors for future in vivo studies.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Antígenos CD/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apirase/imunologia , Apirase/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Humanos , Imunoterapia , Leucócitos Mononucleares/metabolismo , Neoplasias Pulmonares/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas , Receptores Proteína Tirosina Quinases , Sulfonas , Microambiente Tumoral
11.
iScience ; 25(6): 104470, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35692634

RESUMO

Extracellular ATP released to the ischemic brain parenchyma is quickly metabolized by ectonucleotidases. Among them, the ecto-5'-nucleotidase CD73 encoded by Nt5e generates immunosuppressive adenosine. Genetic deletion of Nt5e led to increased infarct size in the murine photothrombotic stroke model. We aimed at validating this result using the transient middle cerebral artery occlusion (tMCAO) stroke model that represents pathophysiological aspects of penumbra and reperfusion. Three days after tMACO, we did not detect a difference in stroke size between CD73-deficient (CD73-/-) and control mice. Consistent with this finding, CD73-/- and control mice showed comparable numbers and composition of brain-infiltrating leukocytes measured by flow cytometry. Using NanoString technology, we further demonstrated that CD73-/- and control mice do not differ regarding glia cell gene expression profiles. Our findings highlight the potential impact of stroke models on study outcome and the need for cross-validation of originally promising immunomodulatory candidates.

12.
Brain Commun ; 4(1): fcab292, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34993476

RESUMO

Although most of the progressive multifocal leukoencephalopathy cases in sarcoidosis patients are explained by the treatment with immunosuppressive drugs, it is also reported in treatment-naive sarcoidosis patients, which implies a general predisposition of sarcoidosis patients for progressive multifocal leukoencephalopathy. Indeed, it was shown that active sarcoidosis patients have increased regulatory T cell frequencies which could lead to a subsequent systemic immunosuppression. However, if sarcoidosis with systemic changes of T cell subsets frequencies constitute a risk factor for the development of progressive multifocal leukoencephalopathy, which could then be counteracted by sarcoidosis treatment, is not known. In this cohort study, we included, characterized and followed-up six patients with bioptically confirmed definite progressive multifocal leukoencephalopathy and definite or probable sarcoidosis presenting between April 2013 and January 2019, four of them had no immunosuppressive therapy at the time of developing first progressive multifocal leukoencephalopathy symptoms. Analysis of immune cell subsets in these patients revealed significant imbalances of CD4+ T cell and regulatory T cell frequencies. Due to the progression of progressive multifocal leukoencephalopathy in four patients, we decided to treat sarcoidosis anticipating normalization of immune cell subset frequencies and thereby improving progressive multifocal leukoencephalopathy. Notably, by treatment with infliximab, an antibody directed against tumour necrosis factor-α, three patients continuously improved clinically, JC virus was no longer detectable in the cerebrospinal fluid and regulatory T cell frequencies decreased. One patient was initially misdiagnosed as neurosarcoidosis and died 9 weeks after treatment initiation due to aspiration pneumonia. Our study provides insight that sarcoidosis can lead to changes in T cell subset frequencies, which predisposes to progressive multifocal leukoencephalopathy. Although immunosuppressive drugs should be avoided in progressive multifocal leukoencephalopathy, paradoxically in patients with sarcoidosis treatment with the immunosuppressive infliximab might restore normal T cell distribution and thereby halt progressive multifocal leukoencephalopathy progression.

13.
Nat Commun ; 12(1): 5911, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34625545

RESUMO

Immune cells at sites of inflammation are continuously activated by local antigens and cytokines, and regulatory mechanisms must be enacted to control inflammation. The stepwise hydrolysis of extracellular ATP by ectonucleotidases CD39 and CD73 generates adenosine, a potent immune suppressor. Here we report that human effector CD8 T cells contribute to adenosine production by releasing CD73-containing extracellular vesicles upon activation. These extracellular vesicles have AMPase activity, and the resulting adenosine mediates immune suppression independently of regulatory T cells. In addition, we show that extracellular vesicles isolated from the synovial fluid of patients with juvenile idiopathic arthritis contribute to T cell suppression in a CD73-dependent manner. Our results suggest that the generation of adenosine upon T cell activation is an intrinsic mechanism of human effector T cells that complements regulatory T cell-mediated suppression in the inflamed tissue. Finally, our data underscore the role of immune cell-derived extracellular vesicles in the control of immune responses.


Assuntos
5'-Nucleotidase/metabolismo , Adenosina/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas Ligadas por GPI/metabolismo , Terapia de Imunossupressão , 5'-Nucleotidase/genética , Trifosfato de Adenosina , Animais , Autoimunidade , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Proliferação de Células , Vesículas Extracelulares/imunologia , Humanos , Inflamação , Ativação Linfocitária , Camundongos , Linfócitos T , Linfócitos T Reguladores/imunologia
14.
Front Immunol ; 12: 703719, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34504490

RESUMO

Mouse T cells express the ecto-ADP-ribosyltransferase ARTC2.2, which can transfer the ADP-ribose group of extracellular nicotinamide adenine dinucleotide (NAD+) to arginine residues of various cell surface proteins thereby influencing their function. Several targets of ARTC2.2, such as P2X7, CD8a and CD25 have been identified, however a comprehensive mouse T cell surface ADP-ribosylome analysis is currently missing. Using the Af1521 macrodomain-based enrichment of ADP-ribosylated peptides and mass spectrometry, we identified 93 ADP-ribsoylated peptides corresponding to 67 distinct T cell proteins, including known targets such as CD8a and CD25 but also previously unknown targets such as CD73. We evaluated the impact of ADP-ribosylation on the capability of CD73 to generate adenosine from adenosine monophosphate. Our results show that extracellular NAD+ reduces the enzymatic activity of CD73 HEK cells co-transfected with CD73/ARTC2.2. Importantly, NAD+ significantly reduced CD73 activity on WT CD8 T cells compared to ARTC2ko CD8 T cells or WT CD8 T cells treated with an ARTC2.2-blocking nanobody. Our study provides a comprehensive list of T cell membrane proteins that serve as targets for ADP-ribosylation by ARTC2.2 and whose function may be therefore affected by ADP-ribosylation.


Assuntos
5'-Nucleotidase/imunologia , ADP Ribose Transferases/imunologia , ADP-Ribosilação/imunologia , Linfócitos T CD8-Positivos/imunologia , 5'-Nucleotidase/genética , ADP Ribose Transferases/genética , ADP-Ribosilação/genética , Animais , Camundongos , Camundongos Knockout
15.
Sci Immunol ; 6(57)2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712472

RESUMO

Epigenetic landscapes can provide insight into regulation of gene expression and cellular diversity. Here, we examined the transcriptional and epigenetic profiles of seven human blood natural killer (NK) cell populations, including adaptive NK cells. The BCL11B gene, encoding a transcription factor (TF) essential for T cell development and function, was the most extensively regulated, with expression increasing throughout NK cell differentiation. Several Bcl11b-regulated genes associated with T cell signaling were specifically expressed in adaptive NK cell subsets. Regulatory networks revealed reciprocal regulation at distinct stages of NK cell differentiation, with Bcl11b repressing RUNX2 and ZBTB16 in canonical and adaptive NK cells, respectively. A critical role for Bcl11b in driving NK cell differentiation was corroborated in BCL11B-mutated patients and by ectopic Bcl11b expression. Moreover, Bcl11b was required for adaptive NK cell responses in a murine cytomegalovirus model, supporting expansion of these cells. Together, we define the TF regulatory circuitry of human NK cells and uncover a critical role for Bcl11b in promoting NK cell differentiation and function.


Assuntos
Diferenciação Celular/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Biomarcadores , Diferenciação Celular/genética , Pré-Escolar , Montagem e Desmontagem da Cromatina , Elementos Facilitadores Genéticos , Epigênese Genética , Regulação da Expressão Gênica , Antígenos HLA/genética , Antígenos HLA/imunologia , Humanos , Imunofenotipagem , Lactente , Células Matadoras Naturais/citologia , Camundongos , Camundongos Knockout , Receptores KIR/genética , Receptores KIR/metabolismo , Proteínas Repressoras/genética , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Transcriptoma , Proteínas Supressoras de Tumor/genética
17.
Front Immunol ; 10: 1729, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31404305

RESUMO

Extracellular adenine nucleotides participate in cell-to-cell communication and modulate the immune response. The concerted action of ectonucleotidases CD39 and CD73 plays a major role in the local production of anti-inflammatory adenosine, but both ectonucleotidases are rarely co-expressed by human T cells. The expression of CD39 on T cells increases upon T cell activation and is high at sites of inflammation. CD73, in contrast, disappears from the cellular membrane after activation. The possibility that CD73 could act in trans would resolve the conundrum of both enzymes being co-expressed for the degradation of ATP and the generation of adenosine. An enzymatically active soluble form of CD73 has been reported, and AMPase activity has been detected in body fluids of patients with inflammation and cancer. It is not yet clear how CD73, a glycosylphosphatidylinositol (GPI)-anchored protein, is released from the cell membrane, but plausible mechanisms include cleavage by metalloproteinases and shedding mediated by cell-associated phospholipases. Importantly, like many other GPI-anchored proteins, CD73 at the cell membrane is preferentially localized in detergent-resistant domains or lipid rafts, which often contribute to extracellular vesicles (EVs). Indeed, CD73-containing vesicles of different size and origin and with immunomodulatory function have been found in the tumor microenvironment. The occurrence of CD73 as non-cell-bound molecule widens the range of action of this enzyme at sites of inflammation. In this review, we will discuss the generation of non-cell-bound CD73 and its physiological role in inflammation.


Assuntos
5'-Nucleotidase/fisiologia , Inflamação/imunologia , 5'-Nucleotidase/biossíntese , 5'-Nucleotidase/genética , Adenosina/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Comunicação Celular , Membrana Celular/enzimologia , Líquido Extracelular/metabolismo , Vesículas Extracelulares/enzimologia , Proteínas Ligadas por GPI/biossíntese , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/fisiologia , Glicosilfosfatidilinositóis/metabolismo , Humanos , Inflamação/metabolismo , Ativação Linfocitária , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Microdomínios da Membrana/enzimologia , Camundongos , Proteínas de Neoplasias/fisiologia , Neoplasias/imunologia , Neoplasias/patologia , Receptores Purinérgicos P1/fisiologia , Solubilidade , Especificidade da Espécie , Microambiente Tumoral
18.
Front Immunol ; 10: 1065, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191516

RESUMO

Background: Natural Killer T (NKT) cells are CD1d-restricted innate-like T cells that can rapidly release stored cytokines upon recognition of lipid antigens. In mice, type I NKT cells seem to promote liver inflammation, whereas type II NKT cells seem to restrict hepatitis. Here, we aimed at characterizing the role of human type I and type II NKT in patients with autoimmune hepatitis (AIH). Methods: NKT cells were analyzed by flow cytometry in peripheral blood and liver of AIH patients and control groups. α-galactosylceramide-loaded or sulfatide-loaded tetramers were used to detect type I or II NKT cells, respectively. Hepatic CD1d was stained by in situ-hybridization of liver biopsies. Results and Conclusions: Type II NKT cells were more prevalent in human peripheral blood and liver than type I NKT cells. In AIH patients, the frequency of sulfatide-reactive type II NKT cells was significantly increased in peripheral blood (0.11% of peripheral blood leukocytes) and liver (3.78% of intrahepatic leukocytes) compared to healthy individuals (0.05% and 1.82%) and patients with drug-induced liver injury (0.06% and 2.03%; p < 0.05). Intrahepatic type II NKT cells of AIH patients had a different cytokine profile than healthy subjects with an increased frequency of TNFα (77.8% vs. 59.1%, p < 0.05), decreased IFNγ (32.7% vs. 63.0%, p < 0.05) and a complete lack of IL-4 expressing cells (0% vs. 2.1%, p < 0.05). T cells in portal tracts expressed significantly more CD1d-RNA in AIH livers compared to controls. This study supports that in contrast to their assumed protective role in mice, human intrahepatic, sulfatide-reactive type II NKT cells displayed a proinflammatory cytokine profile in patients with AIH. Infiltrating T cells in portal areas of AIH patients overexpressed CD1d and could thereby activate type II NKT cells.


Assuntos
Hepatite Autoimune/imunologia , Fígado/imunologia , Sulfoglicoesfingolipídeos/imunologia , Adulto , Idoso , Antígenos CD1d/análise , Citocinas/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Células T Matadoras Naturais/imunologia , Fenótipo , Receptores de Quimiocinas/sangue
19.
Brain ; 141(8): 2299-2311, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29985992

RESUMO

The transcription factor BCL11B is essential for development of the nervous and the immune system, and Bcl11b deficiency results in structural brain defects, reduced learning capacity, and impaired immune cell development in mice. However, the precise role of BCL11B in humans is largely unexplored, except for a single patient with a BCL11B missense mutation, affected by multisystem anomalies and profound immune deficiency. Using massively parallel sequencing we identified 13 patients bearing heterozygous germline alterations in BCL11B. Notably, all of them are affected by global developmental delay with speech impairment and intellectual disability; however, none displayed overt clinical signs of immune deficiency. Six frameshift mutations, two nonsense mutations, one missense mutation, and two chromosomal rearrangements resulting in diminished BCL11B expression, arose de novo. A further frameshift mutation was transmitted from a similarly affected mother. Interestingly, the most severely affected patient harbours a missense mutation within a zinc-finger domain of BCL11B, probably affecting the DNA-binding structural interface, similar to the recently published patient. Furthermore, the most C-terminally located premature termination codon mutation fails to rescue the progenitor cell proliferation defect in hippocampal slice cultures from Bcl11b-deficient mice. Concerning the role of BCL11B in the immune system, extensive immune phenotyping of our patients revealed alterations in the T cell compartment and lack of peripheral type 2 innate lymphoid cells (ILC2s), consistent with the findings described in Bcl11b-deficient mice. Unsupervised analysis of 102 T lymphocyte subpopulations showed that the patients clearly cluster apart from healthy children, further supporting the common aetiology of the disorder. Taken together, we show here that mutations leading either to BCL11B haploinsufficiency or to a truncated BCL11B protein clinically cause a non-syndromic neurodevelopmental delay. In addition, we suggest that missense mutations affecting specific sites within zinc-finger domains might result in distinct and more severe clinical outcomes.


Assuntos
Transtornos do Neurodesenvolvimento/genética , Proteínas Repressoras/genética , Proteínas Repressoras/fisiologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/fisiologia , Adolescente , Animais , Criança , Pré-Escolar , Feminino , Regulação da Expressão Gênica/genética , Mutação em Linhagem Germinativa , Haploinsuficiência , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Linfócitos/patologia , Linfócitos/fisiologia , Masculino , Camundongos , Mutação , Proteínas Repressoras/metabolismo , Linfócitos T/fisiologia , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/metabolismo
20.
PLoS One ; 13(5): e0197151, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29742141

RESUMO

The ectoenzymes CD39 and CD73 degrade extracellular ATP to adenosine. ATP is released by stressed or damaged cells and provides pro-inflammatory signals to immune cells through P2 receptors. Adenosine, on the other hand, suppresses immune cells by stimulating P1 receptors. Thus, CD39 and CD73 can shape the quality of immune responses. Here we demonstrate that upregulation of CD39 is a consistent feature of activated conventional CD4+ and CD8+ T cells. Following stimulation in vitro, CD4+ and CD8+ T cells from human blood gained surface expression of CD39 but displayed only low levels of CD73. Activated human T cells from inflamed joints largely presented with a CD39+CD73- phenotype. In line, in spleens of mice with acute Listeria monocytogenes, listeria-specific CD4+ and CD8+ T cells acquired a CD39+CD73- phenotype. To test the function of CD39 in control of bacterial infection, CD39-deficient (CD39-/-) mice were infected with L. monocytogenes. CD39-/- mice showed better initial control of L. monocytogenes, which was associated with enhanced production of inflammatory cytokines. In the late stage of infection, CD39-/- mice accumulated more listeria-specific CD8+ T cells in the spleen than wildtype animals suggesting that CD39 attenuates the CD8+ T-cell response to infection. In conclusion, our results demonstrate that CD39 is upregulated on conventional CD4+ and CD8+ T cells at sites of acute infection and inflammation, and that CD39 dampens responses to bacterial infection.


Assuntos
Antígenos CD/imunologia , Apirase/imunologia , Infecções/genética , Inflamação/genética , Listeriose/imunologia , Animais , Antígenos CD/genética , Apirase/genética , Linfócitos T CD8-Positivos/imunologia , Citometria de Fluxo , Regulação da Expressão Gênica/imunologia , Humanos , Imunidade Inata/genética , Infecções/imunologia , Infecções/microbiologia , Inflamação/imunologia , Inflamação/microbiologia , Listeria monocytogenes/imunologia , Listeria monocytogenes/patogenicidade , Listeriose/microbiologia , Ativação Linfocitária/genética , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA