Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
BMC Neurol ; 23(1): 76, 2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36803465

RESUMO

PURPOSE: Glioblastoma (GBM) is the most common primary malignant brain tumor in adults. Despite the best available treatment, prognosis remains poor. Current standard therapy consists of surgical removal of the tumor followed by radiotherapy and chemotherapy with the alkylating agent temozolomide (TMZ). Experimental studies suggest that antisecretory factor (AF), an endogenous protein with proposed antisecretory and anti-inflammatory properties, may potentiate the effect of TMZ and alleviate cerebral edema. Salovum is an egg yolk powder enriched for AF and is classified as a medical food in the European Union. In this pilot study, we evaluate the safety and feasibility of add-on Salovum in GBM patients. METHODS: Eight patients with newly diagnosed, histologically confirmed GBM were prescribed Salovum during concomitant radiochemotherapy. Safety was determined by the number of treatment-related adverse events. Feasibility was determined by the number of patients who completed the full prescribed Salovum treatment. RESULTS: No serious treatment-related adverse events were observed. Out of 8 included patients, 2 did not complete the full treatment. Only one of the dropouts was due to issues directly related to Salovum, which were nausea and loss of appetite. Median survival was 23 months. CONCLUSIONS: We conclude that Salovum is safe to use as an add-on treatment for GBM. In terms of feasibility, adherence to the treatment regimen requires a determined and independent patient as the large doses prescribed may cause nausea and loss of appetite. TRIAL REGISTRATION: ClinicalTrials.gov NCT04116138. Registered on 04/10/2019.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Humanos , Glioblastoma/patologia , Projetos Piloto , Neoplasias Encefálicas/patologia , Temozolomida/uso terapêutico , Antineoplásicos Alquilantes/uso terapêutico
2.
Neurooncol Pract ; 8(6): 706-717, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34777840

RESUMO

BACKGROUND: Early extensive surgery is a cornerstone in treatment of diffuse low-grade gliomas (DLGGs), and an additional survival benefit has been demonstrated from early radiochemotherapy in selected "high-risk" patients. Still, there are a number of controversies related to DLGG management. The objective of this multicenter population-based cohort study was to explore potential variations in diagnostic work-up and treatment between treating centers in 2 Scandinavian countries with similar public health care systems. METHODS: Patients screened for inclusion underwent primary surgery of a histopathologically verified diffuse WHO grade II glioma in the time period 2012 through 2017. Clinical and radiological data were collected from medical records and locally conducted research projects, whereupon differences between countries and inter-hospital variations were explored. RESULTS: A total of 642 patients were included (male:female ratio 1:4), and annual age-standardized incidence rates were 0.9 and 0.8 per 100 000 in Norway and Sweden, respectively. Considerable inter-hospital variations were observed in preoperative work-up, tumor diagnostics, surgical strategies, techniques for intraoperative guidance, as well as choice and timing of adjuvant therapy. CONCLUSIONS: Despite geographical population-based case selection, similar health care organizations, and existing guidelines, there were considerable variations in DLGG management. While some can be attributed to differences in clinical implementation of current scientific knowledge, some of the observed inter-hospital variations reflect controversies related to diagnostics and treatment. Quantification of these disparities renders possible identification of treatment patterns associated with better or worse outcomes and may thus represent a step toward more uniform evidence-based care.

3.
Neuroimage Clin ; 17: 717-730, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29264113

RESUMO

Stroke causes direct structural damage to local brain networks and indirect functional damage to distant brain regions. Neuroplasticity after stroke involves molecular changes within perilesional tissue that can be influenced by regions functionally connected to the site of injury. Spontaneous functional recovery can be enhanced by rehabilitative strategies, which provides experience-driven cell signaling in the brain that enhances plasticity. Functional neuroimaging in humans and rodents has shown that spontaneous recovery of sensorimotor function after stroke is associated with changes in resting-state functional connectivity (RS-FC) within and across brain networks. At the molecular level, GABAergic inhibitory interneurons can modulate brain plasticity in peri-infarct and remote brain regions. Among this cell-type, a decrease in parvalbumin (PV)-immunoreactivity has been associated with improved behavioral outcome. Subjecting rodents to multisensory stimulation through exposure to an enriched environment (EE) enhances brain plasticity and recovery of function after stroke. Yet, how multisensory stimulation relates to RS-FC has not been determined. In this study, we investigated the effect of EE on recovery of RS-FC and behavior in mice after stroke, and if EE-related changes in RS-FC were associated with levels of PV-expressing neurons. Photothrombotic stroke was induced in the sensorimotor cortex. Beginning 2 days after stroke, mice were housed in either standard environment (STD) or EE for 12 days. Housing in EE significantly improved lost tactile-proprioceptive function compared to mice housed in STD environment. RS-FC in the mouse was measured by optical intrinsic signal imaging 14 days after stroke or sham surgery. Stroke induced a marked reduction in RS-FC within several perilesional and remote brain regions. EE partially restored interhemispheric homotopic RS-FC between spared motor regions, particularly posterior secondary motor. Compared to mice housed in STD cages, EE exposure lead to increased RS-FC between posterior secondary motor regions and contralesional posterior parietal and retrosplenial regions. The increased regional RS-FC observed in EE mice after stroke was significantly correlated with decreased PV-immunoreactivity in the contralesional posterior motor region. In conclusion, experimental stroke and subsequent housing in EE induces dynamic changes in RS-FC in the mouse brain. Multisensory stimulation associated with EE enhances RS-FC among distinct brain regions relevant for recovery of sensorimotor function and controlled movements that may involve PV/GABA interneurons. Our results indicate that targeting neural circuitry involving spared motor regions across hemispheres by neuromodulation and multimodal sensory stimulation could improve rehabilitation after stroke.


Assuntos
Isquemia Encefálica/fisiopatologia , Encéfalo/fisiopatologia , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/fisiopatologia , Animais , Encéfalo/metabolismo , Isquemia Encefálica/complicações , Isquemia Encefálica/reabilitação , Mapeamento Encefálico , Meio Ambiente , Neurônios GABAérgicos/metabolismo , Camundongos Endogâmicos C57BL , Atividade Motora , Imagem Óptica , Parvalbuminas/metabolismo , Propriocepção , Acidente Vascular Cerebral/complicações , Reabilitação do Acidente Vascular Cerebral
4.
PLoS One ; 10(3): e0120074, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25822252

RESUMO

Cerebral edema is a common complication following moderate and severe traumatic brain injury (TBI), and a significant risk factor for development of neuronal death and deterioration of neurological outcome. To this date, medical approaches that effectively alleviate cerebral edema and neuronal death after TBI are not available. Glucagon-like peptide-1 (GLP-1) has anti-inflammatory properties on cerebral endothelium and exerts neuroprotective effects. Here, we investigated the effects of GLP-1 on secondary injury after moderate and severe TBI. Male Sprague Dawley rats were subjected either to TBI by Controlled Cortical Impact (CCI) or sham surgery. After surgery, vehicle or a GLP-1 analogue, Liraglutide, were administered subcutaneously twice daily for two days. Treatment with Liraglutide (200 µg/kg) significantly reduced cerebral edema in pericontusional regions and improved sensorimotor function 48 hours after CCI. The integrity of the blood-brain barrier was markedly preserved in Liraglutide treated animals, as determined by cerebral extravasation of Evans blue conjugated albumin. Furthermore, Liraglutide reduced cortical tissue loss, but did not affect tissue loss and delayed neuronal death in the thalamus on day 7 post injury. Together, our data suggest that the GLP-1 pathway might be a promising target in the therapy of cerebral edema and cortical neuronal injury after moderate and severe TBI.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Peptídeo 1 Semelhante ao Glucagon/análogos & derivados , Liraglutida/uso terapêutico , Animais , Glicemia/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Edema Encefálico/tratamento farmacológico , Edema Encefálico/patologia , Lesões Encefálicas/patologia , Lesões Encefálicas/fisiopatologia , Morte Celular/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/patologia , Modelos Animais de Doenças , Peptídeo 1 Semelhante ao Glucagon/administração & dosagem , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Liraglutida/administração & dosagem , Masculino , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/uso terapêutico , Desempenho Psicomotor/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Córtex Sensório-Motor/efeitos dos fármacos , Córtex Sensório-Motor/fisiopatologia
5.
J Neurosci Res ; 88(15): 3414-23, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20890990

RESUMO

Deletion of the tumor suppressor gene p53 has been shown to improve the outcome in experimental models of focal cerebral ischemia and kainate-induced seizures. To evaluate the potential role of p53 in traumatic brain injury, genetically modified mice lacking a functional p53 gene (p53(-/-), n = 9) and their wild-type littermates (p53(+/+), n = 9) were anesthetized and subjected to controlled cortical impact (CCI) experimental brain trauma. After brain injury, neuromotor function was assessed by using composite neuroscore and rotarod tests. By 7 days posttrauma, p53(-/-) mice exhibited significantly improved neuromotor function, in the composite neuroscore (P = 0.002) as well as in two of three individual tests, when compared with brain-injured p53(+/+) animals. CCI resulted in the formation of a cortical cavity (mean volume = 6.1 mm(3)) 7 days postinjury in p53(+/+) as well as p53(-/-) mice. No difference in lesion volume was detected between the two genotypes (P = 0.95). Although significant cell loss was detected in the ipsilateral hippocampus and thalamus of brain-injured animals, no differences between p53(+/+) and p53(-/-) mice were detected. Although our results suggest that lack of the p53 gene results in augmented recovery of neuromotor function following experimental brain trauma, they do not support a role for p53 acting as a mediator of neuronal death in this context, underscoring the complexity of its role in the injured brain.


Assuntos
Lesões Encefálicas/genética , Lesões Encefálicas/patologia , Atividade Motora/fisiologia , Neurônios/patologia , Proteína Supressora de Tumor p53/genética , Animais , Camundongos , Camundongos Knockout , Recuperação de Função Fisiológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA