Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Elife ; 112022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36454035

RESUMO

Background: MicroRNAs (miRNA) and other components contained in extracellular vesicles may reflect the presence of a disease. Lung tissue, sputum, and sera of individuals with idiopathic pulmonary fibrosis (IPF) show alterations in miRNA expression. We designed this study to test whether urine and/or tissue derived exosomal miRNAs from individuals with IPF carry cargo that can promote fibrosis. Methods: Exosomes were isolated from urine (U-IPFexo), lung tissue myofibroblasts (MF-IPFexo), serum from individuals with IPF (n=16) and age/sex-matched controls without lung disease (n=10). We analyzed microRNA expression of isolated exosomes and their in vivo bio-distribution. We investigated the effect on ex vivo skin wound healing and in in vivo mouse lung models. Results: U-IPFexo or MF-IPFexo expressed miR-let-7d, miR-29a-5p, miR-181b-3p and miR-199a-3p consistent with previous reports of miRNA expression obtained from lung tissue/sera from patients with IPF. In vivo bio-distribution experiments detected bioluminescent exosomes in the lung of normal C57Bl6 mice within 5 min after intravenous infusion, followed by distribution to other organs irrespective of exosome source. Exosomes labeled with gold nanoparticles and imaged by transmission electron microscopy were visualized in alveolar epithelial type I and type II cells. Treatment of human and mouse lung punches obtained from control, non-fibrotic lungs with either U-IPFexo or MF-IPFexo produced a fibrotic phenotype. A fibrotic phenotype was also induced in a human ex vivo skin model and in in vivo lung models. Conclusions: Our results provide evidence of a systemic feature of IPF whereby exosomes contain pro-fibrotic miRNAs when obtained from a fibrotic source and interfere with response to tissue injury as measured in skin and lung models. Funding: This work was supported in part by Lester and Sue Smith Foundation and The Samrick Family Foundation and NIH grants R21 AG060338 (SE and MKG), U01 DK119085 (IP, RS, MTC).


Assuntos
Exossomos , Fibrose Pulmonar Idiopática , Nanopartículas Metálicas , MicroRNAs , Animais , Camundongos , Humanos , Ouro , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Fibrose
2.
Sci Transl Med ; 14(644): eabg8397, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35544594

RESUMO

Despite the hyperproliferative environment marked by activation of ß-catenin and overexpression of c-myc, the epidermis surrounding chronic diabetic foot ulcers (DFUs) is clinically hypertrophic and nonmigratory yet does not undergo malignant transformation. We identified miR193b-3p as a master regulator that contributes to this unique cellular phenotype. We determined that induction of tumor suppressor miR193b-3p is a unique feature of DFUs that is not found in venous leg ulcers, acute wounds, or cutaneous squamous cell carcinoma (SCC). Genomic analyses of DFUs identified suppression of the miR193b-3p target gene network that orchestrates cell motility. Inhibition of migration and wound closure was further confirmed by overexpression of miR193b-3p in human organotypic and murine in vivo wound models, whereas miR193b-3p knockdown accelerated wound reepithelialization in human ex vivo and diabetic murine wounds in vivo. The dominant negative effect of miR193b-3p on keratinocyte migration was maintained in the presence of promigratory miR31-5p and miR15b-5p, which were also overexpressed in DFUs. miR193b-3p mediated antimigratory activity by disrupting stress fiber formation and by decreasing activity of GTPase RhoA. Conversely, miR193b-3p targets that typically participate in malignant transformation were found to be differentially regulated between DFUs and SCC, including the proto-oncogenes KRAS (Kirsten rat sarcoma viral proto-oncogene) and KIT (KIT proto-oncogene). Although miR193b-3p acts as a tumor suppressor contributing to low tumor incidence in DFUs, it also acts as a master inhibitor of cellular migration and epithelialization in DFUs. Thus, miR193b-3p may represent a target for wound healing induction, cancer therapeutics, and diagnostics.


Assuntos
Carcinoma de Células Escamosas , Diabetes Mellitus , Pé Diabético , Neoplasias Cutâneas , Animais , Movimento Celular/genética , Pé Diabético/genética , Pé Diabético/patologia , Camundongos , Cicatrização
3.
Mol Ther ; 30(2): 947-962, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-34174444

RESUMO

Despite increasing interest in the reversal of age-related processes, there is a paucity of data regarding the effects of post-menopausal-associated estrogen loss on cellular function. We studied human adipose-derived mesenchymal stem cells (hASCs) isolated from women younger than 45 years old (pre-menopause, pre-hASC) or older than 55 years old (post-menopause, post-hASC). In this study, we provide proof of concept that the age-related ineffective functionality of ASCs can be reversed to improve their ability in promoting tissue repair. We found reduced estrogen receptor expression, decreased estrogen receptor activation, and reduced sensitivity to 17ß-estradiol in post-hASCs. This correlated with decreased antioxidants (catalase and superoxide dismutase [SOD] expression) and increased oxidative stress compared with pre-hASCs. Increasing catalase expression in post-hASCs restored estrogen receptor (ER) expression and their functional capacity to promote tissue repair as shown in human skin ex vivo wound healing and in vivo mouse model of lung injury. Our results suggest that the consequences of 17ß-estradiol decline on the function of hASCs may be reversible by changing the oxidative stress/antioxidant composition.


Assuntos
Tecido Adiposo , Células-Tronco Mesenquimais , Envelhecimento , Animais , Catalase/genética , Catalase/metabolismo , Estrogênios/metabolismo , Estrogênios/farmacologia , Feminino , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos
4.
Adv Wound Care (New Rochelle) ; 11(6): 330-359, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34128387

RESUMO

Significance: Nonhealing wounds are an ever-growing global pandemic, with mortality rates and management costs exceeding many common cancers. Although our understanding of the molecular and cellular factors driving wound healing continues to grow, standards for diagnosing and evaluating wounds remain largely subjective and experiential, whereas therapeutic strategies fail to consistently achieve closure and clinicians are challenged to deliver individualized care protocols. There is a need to apply precision medicine practices to wound care by developing evidence-based approaches, which are predictive, prescriptive, and personalized. Recent Advances: Recent developments in "advanced" wound diagnostics, namely biomarkers (proteases, acute phase reactants, volatile emissions, and more) and imaging systems (ultrasound, autofluorescence, spectral imaging, and optical coherence tomography), have begun to revolutionize our understanding of the molecular wound landscape and usher in a modern age of therapeutic strategies. Herein, biomarkers and imaging systems with the greatest evidence to support their potential clinical utility are reviewed. Critical Issues: Although many potential biomarkers have been identified and several imaging systems have been or are being developed, more high-quality randomized controlled trials are necessary to elucidate the currently questionable role that these tools are playing in altering healing dynamics or predicting wound closure within the clinical setting. Future Directions: The literature supports the need for the development of effective point-of-care wound assessment tools, such as a platform diagnostic array that is capable of measuring multiple biomarkers at once. These, along with advances in telemedicine, synthetic biology, and "smart" wearables, will pave the way for the transformation of wound care into a precision medicine. Clinical Trial Registration number: NCT03148977.


Assuntos
Medicina de Precisão , Cicatrização , Diagnóstico por Imagem/métodos , Ensaios Clínicos Controlados Aleatórios como Assunto
5.
Commun Biol ; 4(1): 757, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34145387

RESUMO

Although impaired keratinocyte migration is a recognized hallmark of chronic wounds, the molecular mechanisms underpinning impaired cell movement are poorly understood. Here, we demonstrate that both diabetic foot ulcers (DFUs) and venous leg ulcers (VLUs) exhibit global deregulation of cytoskeletal organization in genomic comparison to normal skin and acute wounds. Interestingly, we found that DFUs and VLUs exhibited downregulation of ArhGAP35, which serves both as an inactivator of RhoA and as a glucocorticoid repressor. Since chronic wounds exhibit elevated levels of cortisol and caveolin-1 (Cav1), we posited that observed elevation of Cav1 expression may contribute to impaired actin-cytoskeletal signaling, manifesting in aberrant keratinocyte migration. We showed that Cav1 indeed antagonizes ArhGAP35, resulting in increased activation of RhoA and diminished activation of Cdc42, which can be rescued by Cav1 disruption. Furthermore, we demonstrate that both inducible keratinocyte specific Cav1 knockout mice, and MßCD treated diabetic mice, exhibit accelerated wound closure. Taken together, our findings provide a previously unreported mechanism by which Cav1-mediated cytoskeletal organization prevents wound closure in patients with chronic wounds.


Assuntos
Caveolina 1/genética , Úlcera do Pé/patologia , Proteínas Ativadoras de GTPase/genética , Queratinócitos/metabolismo , Proteínas Repressoras/genética , Úlcera Varicosa/patologia , Cicatrização/fisiologia , Animais , Caveolina 1/metabolismo , Linhagem Celular , Movimento Celular/genética , Citoesqueleto/patologia , Pé Diabético/patologia , Regulação para Baixo/genética , Células Epiteliais/metabolismo , Epitélio/crescimento & desenvolvimento , Proteínas Ativadoras de GTPase/metabolismo , Glucocorticoides/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Repressoras/metabolismo , Cicatrização/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
6.
Front Immunol ; 11: 550946, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042139

RESUMO

Perforin-2 (P-2) is an antimicrobial protein with unique properties to kill intracellular bacteria. Gamma delta (GD) T cells, as the major T cell population in epithelial tissues, play a central role in protective and pathogenic immune responses in the skin. However, the tissue-specific mechanisms that control the innate immune response and the effector functions of GD T cells, especially the cross-talk with commensal organisms, are not very well understood. We hypothesized that the most prevalent skin commensal microorganism, Staphylococcus epidermidis, may play a role in regulating GD T cell-mediated cutaneous responses. We analyzed antimicrobial protein P-2 expression in human skin at a single cell resolution using an amplified fluorescence in situ hybridization approach to detect P-2 mRNA in combination with immunophenotyping. We show that S. epidermidis activates GD T cells and upregulates P-2 in human skin ex vivo in a cell-specific manner. Furthermore, P-2 upregulation following S. epidermidis stimulation correlates with increased ability of skin cells to kill intracellular Staphylococcus aureus. Our findings are the first to reveal that skin commensal bacteria induce P-2 expression, which may be utilized beneficially to modulate host innate immune responses and protect from skin infections.


Assuntos
Imunidade Inata , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Infecções Cutâneas Estafilocócicas/imunologia , Infecções Cutâneas Estafilocócicas/metabolismo , Staphylococcus epidermidis/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Biomarcadores , Citocinas/metabolismo , Citotoxicidade Imunológica , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunomodulação , Mediadores da Inflamação/metabolismo , Queratinócitos/imunologia , Queratinócitos/metabolismo , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Contagem de Linfócitos , Proteínas Citotóxicas Formadoras de Poros/genética , Infecções Cutâneas Estafilocócicas/microbiologia
7.
Front Immunol ; 11: 1839, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922397

RESUMO

Gamma delta (GD) T cells are an unconventional T cell type present in both the epidermis and the dermis of human skin. They are critical to regulating skin inflammation, wound healing, and anti-microbial defense. Similar to CD8+ cytotoxic T cells expressing an alpha beta (AB) TCR, GD T cells have cytolytic capabilities. They play an important role in elimination of cutaneous tumors and virally infected cells and have also been implicated in pathogenicity of several autoimmune diseases. T cell cytotoxicity is associated with the expression of the pore forming protein Perforin. Perforin is an innate immune protein containing a membrane attack complex perforin-like (MACPF) domain and functions by forming pores in the membranes of target cells, which allow granzymes and reactive oxygen species to enter the cells and destroy them. Perforin-2, encoded by the gene MPEG1, is a newly discovered member of this protein family that is critical for clearance of intracellular bacteria. Cutaneous GD T cells express both Perforin and Perforin-2, but many questions remain regarding the role that these proteins play in GD T cell mediated cytotoxicity against tumors and bacterial pathogens. Here, we review what is known about Perforin expression by skin GD T cells and the mechanisms that contribute to Perforin activation.


Assuntos
Citotoxicidade Imunológica/imunologia , Linfócitos Intraepiteliais/imunologia , Perforina/imunologia , Animais , Humanos , Linfócitos Intraepiteliais/metabolismo , Perforina/biossíntese
8.
JCI Insight ; 4(23)2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31661463

RESUMO

Diabetic foot ulcers (DFUs) are a life-threatening disease that often results in lower limb amputations and a shortened life span. Current treatment options are limited and often not efficacious, raising the need for new therapies. To investigate the therapeutic potential of topical statins to restore healing in patients with DFUs, we performed next-generation sequencing on mevastatin-treated primary human keratinocytes. We found that mevastatin activated and modulated the EGF signaling to trigger an antiproliferative and promigratory phenotype, suggesting that statins may shift DFUs from a hyperproliferative phenotype to a promigratory phenotype in order to stimulate healing. Furthermore, mevastatin induced a migratory phenotype in primary human keratinocytes through EGF-mediated activation of Rac1, resulting in actin cytoskeletal reorganization and lamellipodia formation. Interestingly, the EGF receptor is downregulated in tissue biopsies from patients with DFUs. Mevastatin restored EGF signaling in DFUs through disruption of caveolae to promote keratinocyte migration, which was confirmed by caveolin-1 (Cav1) overexpression studies. We conclude that topical statins may have considerable therapeutic potential as a treatment option for patients with DFUs and offer an effective treatment for chronic wounds that can be rapidly translated to clinical use.


Assuntos
Caveolina 1/metabolismo , Receptores ErbB/metabolismo , Lovastatina/análogos & derivados , Lovastatina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Pé Diabético , Modelos Animais de Doenças , Feminino , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Fenótipo , Pele/patologia , Suínos , Cicatrização/fisiologia
9.
Mol Ther ; 27(11): 1992-2004, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31409528

RESUMO

Chronic wounds-including diabetic foot ulcers, venous leg ulcers, and pressure ulcers-represent a major health problem that demands an urgent solution and new therapies. Despite major burden to patients, health care professionals, and health care systems worldwide, there are no efficacious therapies approved for treatment of chronic wounds. One of the major obstacles in achieving wound closure in patients is the lack of epithelial migration. Here, we used multiple pre-clinical wound models to show that Caveolin-1 (Cav1) impedes healing and that targeting Cav1 accelerates wound closure. We found that Cav1 expression is significantly upregulated in wound edge biopsies of patients with non-healing wounds, confirming its healing-inhibitory role. Conversely, Cav1 was absent from the migrating epithelium and is downregulated in acutely healing wounds. Specifically, Cav1 interacted with membranous glucocorticoid receptor (mbGR) and epidermal growth factor receptor (EGFR) in a glucocorticoid-dependent manner to inhibit cutaneous healing. However, pharmacological disruption of caveolae by MßCD or CRISPR/Cas9-mediated Cav1 knockdown resulted in disruption of Cav1-mbGR and Cav1-EGFR complexes and promoted epithelialization and wound healing. Our data reveal a novel mechanism of inhibition of epithelialization and wound closure, providing a rationale for pharmacological targeting of Cav1 as potential therapy for patients with non-healing chronic wounds.


Assuntos
Caveolina 1/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Reepitelização/genética , Cicatrização/efeitos dos fármacos , Cicatrização/genética , Caveolina 1/metabolismo , Movimento Celular , Pé Diabético/tratamento farmacológico , Pé Diabético/etiologia , Pé Diabético/metabolismo , Pé Diabético/patologia , Receptores ErbB/metabolismo , Expressão Gênica , Glucocorticoides/farmacologia , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Ligação Proteica , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/patologia
10.
Exp Dermatol ; 28(3): 225-232, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30609079

RESUMO

Perforin-2 (P-2) is a recently described antimicrobial protein with unique properties to kill intracellular bacteria. We investigated P-2 expression pattern and cellular distribution in human skin and its importance in restoration of barrier function during wound healing process and infection with the common wound pathogen Staphylococcus aureus. We describe a novel approach for the measurement of P-2 mRNA within individual skin cells using an amplified fluorescence in situ hybridization (FISH) technique. The unique aspect of this approach is simultaneous detection of P-2 mRNA in combination with immune-phenotyping for cell surface proteins using fluorochrome-conjugated antibodies. We detected P-2 transcript in both hematopoietic (CD45+ ) and non-hematopoietic (CD45- ) cutaneous cell populations, confirming the P-2 expression in both professional and non-professional phagocytes. Furthermore, we found an induction of P-2 during wound healing. P-2 overexpression resulted in a reduction of intracellular S. aureus, while infection of human wounds by this pathogen resulted in P-2 suppression, revealing a novel mechanism by which S. aureus may escape cutaneous immunity to cause persistent wound infections.


Assuntos
Proteínas Citotóxicas Formadoras de Poros/metabolismo , Análise de Célula Única/métodos , Pele/metabolismo , Infecções Estafilocócicas/metabolismo , Cicatrização , Animais , Membrana Celular/metabolismo , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Fibroblastos/metabolismo , Células HEK293 , Humanos , Imunofenotipagem , Hibridização in Situ Fluorescente , Linfócitos Intraepiteliais/imunologia , Linfócitos Intraepiteliais/metabolismo , Queratinócitos/imunologia , Queratinócitos/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Camundongos , Pele/microbiologia , Staphylococcus aureus
11.
FASEB J ; 33(1): 1262-1277, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30088952

RESUMO

Diabetic foot ulcers (DFUs) are a major complication of diabetes, and there is a critical need to develop novel cell- and tissue-based therapies to treat these chronic wounds. Induced pluripotent stem cells (iPSCs) offer a replenishing source of allogeneic and autologous cell types that may be beneficial to improve DFU wound-healing outcomes. However, the biologic potential of iPSC-derived cells to treat DFUs has not, to our knowledge, been investigated. Toward that goal, we have performed detailed characterization of iPSC-derived fibroblasts from both diabetic and nondiabetic patients. Significantly, gene array and functional analyses reveal that iPSC-derived fibroblasts from both patients with and those without diabetes are more similar to each other than were the primary cells from which they were derived. iPSC-derived fibroblasts showed improved migratory properties in 2-dimensional culture. iPSC-derived fibroblasts from DFUs displayed a unique biochemical composition and morphology when grown as 3-dimensional (3D), self-assembled extracellular matrix tissues, which were distinct from tissues fabricated using the parental DFU fibroblasts from which they were reprogrammed. In vivo transplantation of 3D tissues with iPSC-derived fibroblasts showed they persisted in the wound and facilitated diabetic wound closure compared with primary DFU fibroblasts. Taken together, our findings support the potential application of these iPSC-derived fibroblasts and 3D tissues to improve wound healing.-Kashpur, O., Smith, A., Gerami-Naini, B., Maione, A. G., Calabrese, R., Tellechea, A., Theocharidis, G., Liang, L., Pastar, I., Tomic-Canic, M., Mooney, D., Veves, A., Garlick, J. A. Differentiation of diabetic foot ulcer-derived induced pluripotent stem cells reveals distinct cellular and tissue phenotypes.


Assuntos
Diferenciação Celular , Pé Diabético/patologia , Células-Tronco Pluripotentes Induzidas/citologia , Animais , Linhagem Celular , Movimento Celular , Proliferação de Células , Pé Diabético/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Glicosaminoglicanos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Camundongos , Camundongos SCID , Fenótipo , Cicatrização/genética
12.
J Invest Dermatol ; 138(5): 1187-1196, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29273315

RESUMO

Diabetic foot ulcers (DFUs) are a debilitating complication of diabetes in which bacterial presence, including the frequent colonizer Staphylococcus aureus, contributes to inhibition of healing. MicroRNAs (miRs) play a role in healing and host response to bacterial pathogens. However, the mechanisms by which miR response to cutaneous S. aureus contributes to DFU pathophysiology are unknown. Here, we show that S. aureus inhibits wound closure and induces miR-15b-5p in acute human and porcine wound models and in chronic DFUs. Transcriptome analyses of DFU tissue showed induction of miR-15b-5p to be critical, regulating many cellular processes, including DNA repair and inflammatory response, by suppressing downstream targets IKBKB, WEE1, FGF2, RAD50, MSH2, and KIT. Using a human wound model, we confirmed that S. aureus-triggered miR-15b-5p induction results in suppression of the inflammatory- and DNA repair-related genes IKBKB and WEE1. Inhibition of DNA repair and accumulation of DNA breaks was functionally confirmed by the presence of the pH2AX within colonized DFUs. We conclude that S. aureus induces miR-15b-5p, subsequently repressing DNA repair and inflammatory response, showing a mechanism of inhibition of healing in DFUs previously unreported, to our knowledge. This underscores a previously unknown role of DNA damage repair in the pathophysiology of DFUs colonized with S. aureus.


Assuntos
Reparo do DNA , Pé Diabético/microbiologia , Inflamação/etiologia , MicroRNAs/fisiologia , Staphylococcus aureus/patogenicidade , Animais , Proteínas de Ciclo Celular/genética , Células Cultivadas , Humanos , Quinase I-kappa B/genética , Proteínas Nucleares/genética , Proteínas Tirosina Quinases/genética , Suínos , Transcriptoma
13.
J Cell Physiol ; 233(8): 5503-5512, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29271488

RESUMO

Fibrosis can develop in nearly any tissue leading to a wide range of chronic fibrotic diseases. However, current treatment options are limited. In this study, we utilized an established aged mouse model of bleomycin-induced lung fibrosis (BLM) to test our hypothesis that fibrosis may develop simultaneously in multiple organs by evaluating skin fibrosis and wound healing. Fibrosis was induced in lung in aged (18-22-month-old) C57BL/6 male mice by intratracheal BLM administration. Allogeneic adipose-derived mesenchymal stromal cells (ASCs) or saline were injected intravenously 24 hr after BLM administration. Full thickness 8-mm punch wounds were performed 7 days later to study potential systemic anti-fibrotic and wound healing effects of intravenously delivered ASCs. Mice developed lung and skin fibrosis as well as delayed wound closure. Moreover, we observed similar changes in the expression of known pro-fibrotic factors in both lung and skin wound tissue, including miR-199 and protein expression of its corresponding target, caveolin-1, as well as phosphorylation of protein kinase B. Importantly, ASC-treated mice exhibited attenuation of BLM-induced lung and skin fibrosis and accelerated wound healing, suggesting that ASCs may prime injured tissues and prevent end-organ fibrosis.


Assuntos
Pulmão/citologia , Células-Tronco Mesenquimais/citologia , Fibrose Pulmonar/prevenção & controle , Dermatopatias/prevenção & controle , Pele/citologia , Cicatrização/fisiologia , Animais , Bleomicina/farmacologia , Caveolina 1/metabolismo , Modelos Animais de Doenças , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Pele/efeitos dos fármacos , Pele/metabolismo , Dermatopatias/induzido quimicamente , Dermatopatias/metabolismo , Cicatrização/efeitos dos fármacos
14.
J Biol Chem ; 293(4): 1439-1449, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29158265

RESUMO

Diabetic foot ulcers (DFUs), a life-threatening complication of diabetes mellitus, have limited treatment options, often resulting in amputations. HMG-CoA reductase inhibitors such as statins are cholesterol-reducing agents that may provide a new therapeutic option. Statins target the cholesterol pathway and block the synthesis of the wound-healing inhibitors farnesyl pyrophosphate (FPP) and cortisol, ligands for the glucocorticoid receptor (GR). Here we demonstrate that the naturally occurring statin mevastatin reverses FPP's effects and promotes healing by using in vitro wound healing assays, human ex vivo and porcine in vivo wound models, and DFU tissue. Moreover, we measured cortisol levels by ELISA and found that mevastatin inhibited cortisol synthesis in keratinocytes and biopsies from patients with DFU. Of note, topical mevastatin stimulated epithelialization and angiogenesis in vivo Mevastatin also reversed FPP-mediated induction of the GR target, the transcription factor c-Myc (a biomarker of non-healing wounds), in porcine and human wound models. Importantly, mevastatin reversed c-Myc overexpression in DFUs. It induced expression of the long noncoding RNA Gas5 that blocks c-Myc expression, which was confirmed by overexpression studies. We conclude that topical mevastatin accelerates wound closure by promoting epithelialization via multiple mechanisms: modulation of GR ligands and induction of the long noncoding RNA Gas5, leading to c-Myc inhibition. In light of these findings, we propose that repurposing statin drugs for topical treatment of DFUs may offer another option for managing this serious condition.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Queratinócitos/metabolismo , Lovastatina/análogos & derivados , Proteínas Proto-Oncogênicas c-myc/biossíntese , RNA Longo não Codificante/metabolismo , Receptores de Glucocorticoides/metabolismo , Cicatrização/efeitos dos fármacos , Administração Tópica , Pé Diabético/tratamento farmacológico , Pé Diabético/genética , Pé Diabético/metabolismo , Pé Diabético/patologia , Humanos , Queratinócitos/patologia , Lovastatina/farmacologia , Proteínas Proto-Oncogênicas c-myc/genética , RNA Longo não Codificante/genética
15.
Wound Repair Regen ; 25(6): 1017-1026, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29235208

RESUMO

The ex vivo human skin wound model is a widely accepted model to study wound epithelialization. Due to a lack of animal models that fully replicate human conditions, the ex vivo model is a valuable tool to study mechanisms of wound reepithelialization, as well as for preclinical testing of novel therapeutics. The current standard for assessment of wound healing in this model is histomorphometric analysis, which is labor intensive, time consuming, and requires multiple biological and technical replicates in addition to assessment of different time points. Optical coherence tomography (OCT) is an emerging noninvasive imaging technology originally developed for noninvasive retinal scans that avoids the deleterious effects of tissue processing. This study investigated OCT as a novel method for assessing reepithelialization in the human ex vivo wound model. Excisional ex vivo wounds were created, maintained at air-liquid interface, and healing progression was assessed at days 4 and 7 with OCT and histology. OCT provided adequate resolution to identify the epidermis, the papillary and reticular dermis, and importantly, migrating epithelium in the wound bed. We have deployed OCT as a noninvasive tool to produce, longitudinal "optical biopsies" of ex vivo human wound healing process, and we established an optimal quantification method of re-epithelialization based on en face OCT images of the total wound area. Pairwise statistical analysis of OCT and histology based quantifications for the rate of epithelialization have shown the feasibility and superiority of OCT technology for noninvasive monitoring of human wound epithelialization. Furthermore, we have utilized OCT to evaluate therapeutic potential of allogeneic adipose stem cells revealing their ability to promote reepithelialization in human ex vivo wounds. OCT technology is promising for its applications in wound healing and evaluation of novel therapeutics in both the laboratory and the clinical settings.


Assuntos
Reepitelização , Pele/diagnóstico por imagem , Ferimentos e Lesões/diagnóstico por imagem , Adulto , Derme/diagnóstico por imagem , Derme/patologia , Epiderme/diagnóstico por imagem , Epiderme/patologia , Humanos , Pessoa de Meia-Idade , Pele/lesões , Pele/patologia , Transplante de Células-Tronco , Gordura Subcutânea/citologia , Tomografia de Coerência Óptica , Ferimentos e Lesões/patologia
16.
Sci Transl Med ; 9(371)2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-28053158

RESUMO

Chronic nonhealing venous leg ulcers (VLUs) are widespread and debilitating, with high morbidity and associated costs; about $15 billion is spent annually on the care of VLUs in the United States. Despite this, there is a paucity of treatments for VLUs because of the lack of pathophysiologic insight into ulcer development as well as the lack of knowledge regarding biologic actions of existing VLU-targeted therapies. The bioengineered bilayered living cellular construct (BLCC) skin substitute is a U.S. Food and Drug Administration-approved biologic treatment for healing VLUs. To elucidate the mechanisms through which the BLCC promotes healing of chronic VLUs, we conducted a clinical trial (NCT01327937) in which patients with nonhealing VLUs were treated with either standard of care (compression therapy) or the BLCC together with standard of care. Tissue was collected from the VLU edge before and 1 week after treatment, and the samples underwent comprehensive microarray mRNA and protein analyses. Ulcers treated with the BLCC skin substitute displayed three distinct transcriptomic patterns, suggesting that BLCC induced a shift from a nonhealing to a healing tissue response, involving modulation of inflammatory and growth factor signaling, keratinocyte activation, and attenuation of Wnt/ß-catenin signaling. In these ways, BLCC application orchestrated a shift from the chronic nonhealing ulcer microenvironment to a distinctive healing milieu resembling that of an acute, healing wound. Our findings provide in vivo evidence in VLU patients of pathways that can be targeted in the design of new therapies to promote healing of chronic VLUs.


Assuntos
Engenharia Biomédica/métodos , Úlcera da Perna/terapia , Pele Artificial , Úlcera Varicosa/terapia , Cicatrização , Adulto , Idoso , Materiais Biocompatíveis , Biópsia , Colágeno/uso terapêutico , Estudos Cross-Over , Feminino , Perfilação da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Pele/metabolismo , Resultado do Tratamento , Adulto Jovem , beta Catenina/metabolismo
17.
Wound Repair Regen ; 25(6): 912-922, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29315980

RESUMO

Probiotics are beneficial microorganisms, known to exert numerous positive effects on human health, primarily in the battle against pathogens. Probiotics have been associated with improved healing of intestinal ulcers, and healing of infected cutaneous wounds. This article reviews the latest findings on probiotics related to their pro-healing properties on gut epithelium and skin. Proven mechanisms by which probiotic bacteria exert their beneficial effects include direct killing of pathogens, competitive displacement of pathogenic bacteria, reinforcement of epithelial barrier, induction of fibroblasts, and epithelial cells' migration and function. Beneficial immunomodulatory effects of probiotics relate to modulation and activation of intraepithelial lymphocytes, natural killer cells, and macrophages through induced production of cytokines. Systemic effects of beneficial bacteria and link between gut microbiota, immune system, and cutaneous health through gut-brain-skin axes are discussed as well. In light of growing antibiotic resistance of pathogens, antibiotic use is becoming less effective in treating cutaneous and systemic infections. This review points to a new perspective and therapeutic potential of beneficial probiotic species as a safe alternative approach for treatment of patients affected by wound healing disorders and cutaneous infections.


Assuntos
Bactérias/imunologia , Ativação Linfocitária/imunologia , Probióticos/uso terapêutico , Regeneração/imunologia , Pele/lesões , Ferimentos e Lesões/tratamento farmacológico , Movimento Celular , Citocinas/imunologia , Epitélio , Fibroblastos , Microbioma Gastrointestinal/imunologia , Microbioma Gastrointestinal/fisiologia , Humanos , Células Matadoras Naturais/imunologia , Macrófagos/imunologia , Regeneração/fisiologia , Pele/imunologia , Pele/microbiologia , Cicatrização/imunologia , Cicatrização/fisiologia , Ferimentos e Lesões/imunologia
18.
J Invest Dermatol ; 137(5): 1144-1154, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28017831

RESUMO

Glucocorticoids (GCs), key mediators of stress signals, are also potent wound healing inhibitors. To understand how stress signals inhibit wound healing, we investigated the role of membranous glucocorticoid receptor (mbGR) by using cell-impermeable BSA-conjugated dexamethasone. We found that mbGR inhibits keratinocyte migration and wound closure by activating a Wnt-like phospholipase (PLC)/ protein kinase C (PKC) signaling cascade. Rapid activation of mbGR/PLC/PKC further leads to activation of known biomarkers of nonhealing found in patients, ß-catenin and c-myc. Conversely, a selective inhibitor of PKC, calphostin C, blocks mbGR/PKC pathway, and rescues GC-mediated inhibition of keratinocyte migration in vitro and accelerates wound epithelialization of human wounds ex vivo. This novel signaling mechanism may have a major impact on understanding how stress response via GC signaling regulates homeostasis and its role in development and treatments of skin diseases, including wound healing. To test tissue specificity of this nongenomic signaling mechanism, we tested retinal and bronchial human epithelial cells and fibroblasts. We found that mbGR/PLC/PKC signaling cascade exists in all cell types tested, suggesting a more general role. The discovery of this nongenomic signaling pathway, in which glucocorticoids activate Wnt pathway via mbGR, provides new insights into how stress-mediated signals may activate growth signals in various epithelial and mesenchymal tissues.


Assuntos
Células Epiteliais/metabolismo , Glucocorticoides/metabolismo , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais , Cicatrização/fisiologia , Linhagem Celular , Movimento Celular/fisiologia , Células Cultivadas , Fibroblastos/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Queratinócitos/metabolismo , Proteína Quinase C/metabolismo , Estresse Fisiológico/fisiologia , Fosfolipases Tipo C/metabolismo , Via de Sinalização Wnt/fisiologia , beta Catenina/metabolismo
19.
Arch Dermatol Res ; 309(2): 133-139, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28013372

RESUMO

Cutaneous squamous cell carcinoma (cSCC) is a malignant proliferation of keratinocytes with an uncertain molecular basis causing significant morbidity. MicroRNAs (miRs) are small RNA molecules that regulate gene expression on post- transcriptional level. MiRs are critical to various biological processes. To determine if miRs play a role in pathogenesis of invasive cSCC, we collected patients' specimens from in situ and invasive cSCC (n = 19) and examined miRs expression levels using qPCR. Specifically, we evaluated miR-21, miR-103a, miR-186, miR-200b, miR-203, and miR-205 expression levels due to their role in skin biology and epithelial to mesenchymal transition. MiR levels were compared between in situ and invasive cSCCs. We found statistically significant (p ≤ 0.05) upregulation of miR-21 and miR-205 in invasive cSCC compared to cSCC in situ. We concluded that miR-21 and miR-205 may have diagnostic value in determining the invasive properties of cSCCs and that each cSCC displays unique miR profile, underscoring the possibility of personalized medicine approach in developing potential novel, less invasive treatments.


Assuntos
Carcinoma de Células Escamosas/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias Cutâneas/genética , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Escamosas/patologia , Movimento Celular/genética , Proliferação de Células/genética , Humanos , Queratinócitos/metabolismo , MicroRNAs/biossíntese , Pessoa de Meia-Idade , Neoplasias Cutâneas/patologia
20.
Plast Reconstr Surg ; 138(3 Suppl): 18S-28S, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27556760

RESUMO

BACKGROUND: As the population grows older, the incidence and prevalence of conditions that lead to a predisposition for poor wound healing also increase. Ultimately, this increase in nonhealing wounds has led to significant morbidity and mortality with subsequent huge economic ramifications. Therefore, understanding specific molecular mechanisms underlying aberrant wound healing is of great importance. It has and will continue to be the leading pathway to the discovery of therapeutic targets, as well as diagnostic molecular biomarkers. Biomarkers may help identify and stratify subsets of nonhealing patients for whom biomarker-guided approaches may aid in healing. METHODS: A series of literature searches were performed using Medline, PubMed, Cochrane Library, and Internet searches. RESULTS: Currently, biomarkers are being identified using biomaterials sourced locally from human wounds and/or systemically using high-throughput "omics" modalities (genomic, proteomic, lipidomic, and metabolomic analysis). In this review, we highlight the current status of clinically applicable biomarkers and propose multiple steps in validation and implementation spectrum, including those measured in tissue specimens, for example, ß-catenin and c-myc, wound fluid, matrix metalloproteinases and interleukins, swabs, wound microbiota, and serum, for example, procalcitonin and matrix metalloproteinases. CONCLUSIONS: Identification of numerous potential biomarkers using different avenues of sample collection and molecular approaches is currently underway. A focus on simplicity and consistent implementation of these biomarkers, as well as an emphasis on efficacious follow-up therapeutics, is necessary for transition of this technology to clinically feasible point-of-care applications.


Assuntos
Biomarcadores/metabolismo , Complicações Pós-Operatórias/diagnóstico , Ferida Cirúrgica/fisiopatologia , Cicatrização/fisiologia , Doença Crônica , Humanos , Complicações Pós-Operatórias/metabolismo , Complicações Pós-Operatórias/microbiologia , Complicações Pós-Operatórias/prevenção & controle , Procedimentos de Cirurgia Plástica , Ferida Cirúrgica/diagnóstico , Ferida Cirúrgica/metabolismo , Ferida Cirúrgica/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA