RESUMO
Biological polypeptides are known to contain cis-linkage in their main chain as a minor but important feature. Such anomalous connection of amino acids has different structural and functional effects on proteins. Experimental evidence of cis-bonds in proteins is mainly obtained using X-ray crystallography and other methods in the field of structural biology. To date, extensive analyses have been carried out on the experimentally found cis-bonds using the Protein Data Bank (PDB) entry-wise or residue-wise; however, their consistency in each protein has not been examined on a global scale. Data accumulation and advances in computational methodology enable the use of new approaches from a proteomic point of view. Here, we sought to carry out protein-wise analysis and describe a simple procedure for the detection and confirmation of cis-bonds from a set of experimental PDB chains for a protein to discriminate this type of bond from isomerizable and/or misassigned bonds. The resulting set of consistent cis bonds (found at identical positions in multiple chains) provides unprecedented insights into the trend of "high cis content" proteins and the upper limit of consistent cis bonds per polypeptide length. Recognizing such limit would not only be important for a practical check of upcoming structures, but also for the design of novel protein folds beyond the evolutionally-acquired repertoire.
RESUMO
Synthetic phosphate-derived functional groups are important for controlling the function of bioactive molecules inâ vivo. Herein we describe the development of a new type of biocompatible phosphate analog, a fluorophosphoramidate (FPA) functional group that has characteristic P-F and P-N bonds. We found that FPA with a primary amino group was relatively unstable in aqueous solution and was converted to a monophosphate, while FPA with a secondary amino group was stable. Furthermore, by improving the molecular design of FPA, we developed a reaction in which a secondary amino group is converted to a primary amino group in the intracellular environment and clarified that the FPA group functions as a phosphate prodrug of nucleoside. Various FPA-gemcitabine derivatives were synthesized and their toxicity to cancer cells were evaluated. One of the FPA-gemcitabine derivatives showed superior toxicity compared with gemcitabine and its ProTide prodrug, which methodology is widely used in various nucleoside analogs, including anti-cancer and anti-virus drugs.
Assuntos
Neoplasias , Pró-Fármacos , Antivirais/farmacologia , Humanos , Fosfatos , Pró-Fármacos/química , Pró-Fármacos/farmacologiaRESUMO
Genetic rearrangements of anaplastic lymphoma kinase contribute to the pathogenesis of non-small-cell lung cancer; the anaplastic lymphoma kinase inhibitor, ceritinib, is widely used, as it is effective even in patients with non-small-cell lung cancer resistant to other anaplastic lymphoma kinase inhibitors. Although a case of possible ceritinib-induced hyperglycemia was reported, the association of ceritinib with hyperglycemia remains to be investigated. Disproportionality analysis was carried out using the Japanese Adverse Drug Event Report database, which contains all pharmacovigilance data based on spontaneous reports of adverse events between April 2004 and November 2018 to the Pharmaceuticals and Medical Devices Agency. The reporting odds ratio of ceritinib for hyperglycemia was 2.25 (95% confidence interval [CI] 1.24-4.08], whereas those of crizotinib and alectinib were 0.07 (95% CI 0.01-0.40) and 0.94 (95% CI 0.30-2.94), respectively. Among reported events without antidiabetes agent use, the reporting odds ratio of ceritinib was still 2.54 (95% CI 1.27-5.12). Thus, the possibility of hyperglycemia should be carefully monitored in patients receiving ceritinib.
Assuntos
Antineoplásicos/efeitos adversos , Hiperglicemia/induzido quimicamente , Inibidores de Proteínas Quinases/efeitos adversos , Pirimidinas/efeitos adversos , Sulfonas/efeitos adversos , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Bases de Dados Factuais , Feminino , Humanos , Japão , Neoplasias Pulmonares/tratamento farmacológico , Masculino , Razão de ChancesRESUMO
siRNA is a powerful method to suppress specific gene expression and has recently been utilized for molecular biology as well as medicine. However, introduction of dsRNA stimulates immune-responses as side-effects. In the present study, we utilized N6-methyl adenosine, one of the natural modified nucleosides, instead of adenosine in siRNA. When adenosine in the passenger or guide strand of siRNA was completely replaced with N6-methyl adenosine, the immune response against siRNA was evaded without any reduction in RNAi activity. This knowledge will promote the medical application of siRNA and enhance our understanding on cellular discrimination of non-self and self dsRNA.
Assuntos
Adenosina/análogos & derivados , Interferência de RNA/imunologia , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo , Adenosina/química , Sequência de Bases , Expressão Gênica , Células HeLa , Humanos , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/metabolismoRESUMO
Glutathione S-transferase π (GSTP1-1 ) is overexpressed in many types of cancer and is involved in drug resistance. Therefore, GSTP1-1 is an important target in cancer therapy, and many GST inhibitors have been reported. We had previously developed an irreversible inhibitor, GS-ESF, as an effective GST inhibitor; however, its cellular permeability was too low for it to be used in inhibiting intracellular GST. We have now developed new irreversible inhibitors by introducing sulfonyl fluoride (SF) into chloronitrobenzene (CNB). The mechanism of action was revealed to be that CNBSF first reacts with glutathione (GSH) through an aromatic substitution in the cell, then the sulfonyl group on the GSH conjugate with CNBSF reacts with Tyr108 of GST to form a sulfonyl ester bond. Our new inhibitor irreversible inhibited GSTP1-1 both in vitro and in cellulo with a long duration of action.
Assuntos
Inibidores Enzimáticos/farmacologia , Glutationa S-Transferase pi/antagonistas & inibidores , Glutationa/análogos & derivados , Glutationa/farmacologia , Sulfonas/farmacologia , Sequência de Aminoácidos , Sítios de Ligação/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores Enzimáticos/síntese química , Glutationa/síntese química , Glutationa S-Transferase pi/química , Humanos , Simulação de Acoplamento Molecular , Sulfonas/síntese química , Tirosina/químicaRESUMO
Adenosine kinase is a potential target for development of new types of drugs. The COG1839 family has been defined as "adenosine-specific kinase" family based on structural analysis and the adenosine-binding ability of a family member, PAE2307. However, there has been no experimental evidence with regard to the enzymatic function of this protein family. Here we measured the enzymatic activity of TTHA1091, a COG1839 family protein from Thermus thermophilus HB8. The phosphorylation of adenosine by TTHA1091 was undetectable when ATP or ADP were used as phosphate donor. However, the degradation of ADP to AMP was detected, indicating that this protein possessed adenosine diphosphatase (ADPase) activity. The (ADPase) activity was inhibited by divalent cations and was specific to ADP and CDP. Thus, this study provides the first experimental evidence for the enzymatic function of the "adenosine-specific kinase" family and suggests a need to reexamine its functional annotation.
RESUMO
The degradation of purine nucleoside is the first step of purine nucleoside uptake. This degradation is catalyzed by purine nucleoside phosphorylase, which is categorized into two classes: hexameric purine nucleoside phosphorylase (6PNP) and trimeric purine nucleoside phosphorylase (3PNP). Generally, 6PNP and 3PNP degrade adenosine and guanosine, respectively. However, the substrate specificity of 6PNP and 3PNP of Thermus thermophilus (tt6PNP and tt3PNP, respectively) is the reverse of that anticipated based on comparison to other phosphorylases. Specifically, in this paper we reveal by gene disruption that tt6PNP and tt3PNP are discrete enzymes responsible for the degradation of guanosine and adenosine, respectively, in T. thermophilus HB8 cells. Sequence comparison combined with structural information suggested that Asn204 in tt6PNP and Ala196/Asp238 in tt3PNP are key residues for defining their substrate specificity. Replacement of Asn204 in tt6PNP with Asp changed the substrate specificity of tt6PNP to that of a general 6PNP. Similarly, substitution of Ala196 by Glu and Asp238 by Asn changed the substrate specificity of tt3PNP to that of a general 3PNP. Our results indicate that the residues at these positions determine substrate specificity of PNPs in general. Sequence analysis further suggested most 6PNP and 3PNP enzymes in thermophilic species belonging to the Deinococcus-Thermus phylum share the same critical residues as tt6PNP and tt3PNP, respectively.