Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612383

RESUMO

Polyacrylic acid (PAA), an organic chemical, has been used as an intermediate in the manufacture of pharmaceuticals and cosmetics. It has been suggested recently that PAA has a high pulmonary inflammatory and fibrotic potential. Although endoplasmic reticulum stress is induced by various external and intracellular stimuli, there have been no reports examining the relationship between PAA-induced lung injury and endoplasmic reticulum stress. F344 rats were intratracheally instilled with dispersed PAA (molecular weight: 269,000) at low (0.5 mg/mL) and high (2.5 mg/mL) doses, and they were sacrificed at 3 days, 1 week, 1 month, 3 months and 6 months after exposure. PAA caused extensive inflammation and fibrotic changes in the lungs' histopathology over a month following instillation. Compared to the control group, the mRNA levels of endoplasmic reticulum stress markers Bip and Chop in BALF were significantly increased in the exposure group. In fluorescent immunostaining, both Bip and Chop exhibited co-localization with macrophages. Intratracheal instillation of PAA induced neutrophil inflammation and fibrosis in the rat lung, suggesting that PAA with molecular weight 269,000 may lead to pulmonary disorder. Furthermore, the presence of endoplasmic reticulum stress in macrophages was suggested to be involved in PAA-induced lung injury.


Assuntos
Acrilatos , Lesão Pulmonar , Polímeros , Ratos , Animais , Ratos Endogâmicos F344 , Estresse do Retículo Endoplasmático , Inflamação , Pulmão
2.
Biomolecules ; 13(5)2023 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-37238588

RESUMO

Psychological stress plays a major role in depression, and interleukin-6 (IL-6) is elevated during depression and psychological stress. MicroRNAs (miRNAs) in extracellular vesicles (EVs), including exosomes and microvesicles, suppress mRNA expression in other cells when endocytosed. In this study, we analyzed the effect of IL-6 on EVs secreted by neural precursor cells. Cells from the human immortalized neural precursor cell line LUHMES were treated with IL-6. EVs were collected using a nanofiltration method. We then analyzed the uptake of LUHMES-derived EVs by astrocytes (ACs) and microglia (MG). Microarray analysis of miRNAs was performed using EV-incorporated RNA and intracellular RNA from ACs and MG to search for increased numbers of miRNAs. We applied the miRNAs to ACs and MG, and examined the cells for suppressed mRNAs. IL-6 increased several miRNAs in the EVs. Three of these miRNAs were originally low in ACs and MG (hsa-miR-135a-3p, hsa-miR-6790-3p, and hsa-miR-11399). In ACs and MG, hsa-miR-6790-3p and hsa-miR-11399 suppressed four mRNAs involved in nerve regeneration (NREP, KCTD12, LLPH, and CTNND1). IL-6 altered the types of miRNAs in EVs derived from neural precursor cells, by which mRNAs involved in nerve regeneration were decreased in ACs and MG. These findings provide new insights into the involvement of IL-6 in stress and depression.


Assuntos
Vesículas Extracelulares , MicroRNAs , Células-Tronco Neurais , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Microglia/metabolismo , Astrócitos/metabolismo , Células-Tronco Neurais/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo
3.
J Occup Health ; 64(1): e12367, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36366872

RESUMO

OBJECTIVES: We conducted inhalation and intratracheal instillation studies in order to examine the effects of tungsten trioxide (WO3 ) nanoparticles on the lung, and evaluated whether or not the nanoparticles would cause persistent lung inflammation. METHODS: In the inhalation study, male 10-week-old Fischer 334 rats were classified into 3 groups. The control, low-dose, and high-dose groups inhaled clean air, 2, and 10 mg/m3 WO3 nanoparticles, respectively, for 6 h each day for 4 weeks. The rats were dissected at 3 days, 1 month, and 3 months after the inhalation, and the bronchoalveolar lavage fluid (BALF) and lung tissue were examined. In the intratracheal instillation study, male 12-week-old Fischer 334 rats were divided into 3 subgroups. The control, low-dose, and high-dose groups were intratracheally instilled 0.4 ml distilled water, 0.2, and 1.0 mg WO3 nanoparticles, respectively, dissolved in 0.4 ml distilled water. The rats were sacrificed at 3 days, 1 week, and 1 month after the intratracheal instillation, and the BALF and lung tissue were analyzed as in the inhalation study. RESULTS: The inhalation and instillation of WO3 nanoparticles caused transient increases in the number and rate of neutrophils, cytokine-induced neutrophil chemoattractant (CINC)-1, and CINC-2 in BALF, but no histopathological changes or upregulation of heme oxygenase (HO)-1 in the lung tissue. CONCLUSION: Our results suggest that WO3 nanoparticles have low toxicity to the lung. According to the results of the inhalation study, we also propose that the no observed adverse effect level (NOAEL) of WO3 nanoparticles is 2 mg/m3 .


Assuntos
Pulmão , Nanopartículas , Masculino , Ratos , Animais , Líquido da Lavagem Broncoalveolar , Nanopartículas/toxicidade , Ratos Endogâmicos F344 , Água
4.
J Occup Health ; 62(1): e12146, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32710690

RESUMO

OBJECTIVES: Along with technological innovations for improving the efficiency of printing, nanoparticles have been added to the surface of toners, and there is concern about the harmful effects of those components. We investigated, through a long-term observation following intratracheal instillation using rats, whether exposure to a toner with external additives can cause tumorigenesis. METHODS: Female Wistar rats were intratracheally instilled with dispersed toner at low (1 mg/rat) and high (2 mg/rat) doses, and the rats were sacrificed at 24 months after exposure, after which we examined pulmonary inflammation, histopathological changes, and DNA damage in the lung. Rats that had deceased before 24 months were dissected at that time as well, to compare tumor development. RESULTS: Although alveolar macrophages with pigment deposition in the alveoli were observed in the 1 and 2 mg exposure groups, no significant lung inflammation/fibrosis or tumor was observed. Since immunostaining with 8-OHdG or γ-H2AX did not show a remarkable positive reaction, it is thought that toner did not cause severe DNA damage to lung tissue. CONCLUSION: These results suggest that toner with external additives may have low toxicity in the lung.


Assuntos
Carcinogênese/induzido quimicamente , Exposição por Inalação/efeitos adversos , Tinta , Pulmão/patologia , Pneumonia/induzido quimicamente , Animais , Líquido da Lavagem Broncoalveolar/química , Feminino , Ratos , Ratos Wistar , Traqueia
5.
Biomed Res Int ; 2017: 4245309, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28191462

RESUMO

We investigated the harmful effects of exposure to a toner with external additives by a long-term inhalation study using rats, examining pulmonary inflammation, oxidative stress, and histopathological changes in the lung. Wistar rats were exposed to a well-dispersed toner (mean of MMAD: 2.1 µm) at three mass concentrations of 1, 4, and 16 mg/m3 for 22.5 months, and the rats were sacrificed after 6 months, 12 months, and 22.5 months of exposure. The low and medium concentrations did not induce statistically significant pulmonary inflammation, but the high concentration did, and, in addition, a histopathological examination showed fibrosis in the lung. Although lung tumor was observed in one sample of high exposure for 22.5 months, the cause was not statistically significant. On the other hand, a persistent increase in 8-OHdG was observed in the high exposure group, indicating that DNA damage by oxidative stress with persistent inflammation leads to the formation of tumorigenesis. The results of our studies show that toners with external additives lead to pulmonary inflammation, oxidative stress, and fibrosis only at lung burdens beyond overload. These data suggest that toners with external additives may have low toxicity in the lung.


Assuntos
Pulmão/patologia , Impressão , 8-Hidroxi-2'-Desoxiguanosina , Administração por Inalação , Animais , Peso Corporal , Líquido da Lavagem Broncoalveolar/citologia , DNA/metabolismo , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Feminino , Heme Oxigenase (Desciclizante)/metabolismo , Contagem de Leucócitos , Tamanho do Órgão , Peroxidase/metabolismo , Ratos Wistar , Coloração e Rotulagem
6.
J Nanopart Res ; 17(6): 241, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26069452

RESUMO

In order to investigate the pulmonary toxicity of titanium dioxide (TiO2) nanoparticles, we performed an intratracheal instillation study with rats of well-dispersed TiO2 nanoparticles and examined the pulmonary inflammation and histopathological changes in the lung. Wistar Hannover rats were intratracheally administered 0.2 mg (0.66 mg/kg) and 1.0 mg (3.3 mg/kg) of well-dispersed TiO2 nanoparticles (P90; diameter of agglomerates: 25 nm), then the pulmonary inflammation responses were examined from 3 days to 6 months after the instillation, and the pathological features were examined up to 24 months. Transient inflammation and the upregulation of chemokines in the broncho-alveolar lavage fluid were observed for 1 month. No respiratory tumors or severe fibrosis were observed during the recovery time. These data suggest that transient inflammation induced by TiO2 may not lead to chronic, irreversible legions in the lung, and that TiO2 nanoparticles may not have a high potential for lung disorder.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA