Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 30(28): e202303887, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38478740

RESUMO

Novel fluorinated foldamers based on aminomethyl-1,4-triazolyl-difluoroacetic acid (1,4-Tz-CF2) units were synthesized and their conformational behaviour was studied by NMR and molecular dynamics. Their activity on the aggregation of the human islet amyloid polypeptide (hIAPP) amyloid protein was evaluated by fluorescence spectroscopy and mass spectrometry. The fluorine labelling of these foldamers allowed the analysis of their interaction with the target protein. We demonstrated that the preferred extended conformation of homotriazolamers of 1,4-Tz-CF2 unit increases the aggregation of hIAPP, while the hairpin-like conformation of more flexible heterotriazolamers containing two 1,4-Tz-CF2 units mixed with natural amino acids from the hIAPP sequence reduces it, and more efficiently than the parent natural peptide. The longer heterotriazolamers having three 1,4-Tz-CF2 units adopting more folded hairpin-like and ladder-like structures similar to short multi-stranded ß-sheets have no effect. This work demonstrates that a good balance between the structuring and flexibility of these foldamers is necessary to allow efficient interaction with the target protein.


Assuntos
Polipeptídeo Amiloide das Ilhotas Pancreáticas , Triazóis , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Humanos , Triazóis/química , Simulação de Dinâmica Molecular , Halogenação , Agregados Proteicos
2.
Molecules ; 29(3)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38338465

RESUMO

Alzheimer's Disease (AD) and Parkinson's Disease (PD) represent two among the most frequent neurodegenerative diseases worldwide. A common hallmark of these pathologies is the misfolding and consequent aggregation of amyloid proteins into soluble oligomers and insoluble ß-sheet-rich fibrils, which ultimately lead to neurotoxicity and cell death. After a hundred years of research on the subject, this is the only reliable histopathological feature in our hands. Since AD and PD are diagnosed only once neuronal death and the first symptoms have appeared, the early detection of these diseases is currently impossible. At present, there is no effective drug available, and patients are left with symptomatic and inconclusive therapies. Several reasons could be associated with the lack of effective therapeutic treatments. One of the most important factors is the lack of selective probes capable of detecting, as early as possible, the most toxic amyloid species involved in the onset of these pathologies. In this regard, chemical probes able to detect and distinguish among different amyloid aggregates are urgently needed. In this article, we will review and put into perspective results from ex vivo and in vivo studies performed on compounds specifically interacting with such early species. Following a general overview on the three different amyloid proteins leading to insoluble ß-sheet-rich amyloid deposits (amyloid ß1-42 peptide, Tau, and α-synuclein), a list of the advantages and disadvantages of the approaches employed to date is discussed, with particular attention paid to the translation of fluorescence imaging into clinical applications. Furthermore, we also discuss how the progress achieved in detecting the amyloids of one neurodegenerative disease could be leveraged for research into another amyloidosis. As evidenced by a critical analysis of the state of the art, substantial work still needs to be conducted. Indeed, the early diagnosis of neurodegenerative diseases is a priority, and we believe that this review could be a useful tool for better investigating this field.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/metabolismo , Peptídeos beta-Amiloides/metabolismo , Fluorescência , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/metabolismo , Doença de Alzheimer/metabolismo , Amiloide , Proteínas Amiloidogênicas , Diagnóstico Precoce , Tomografia por Emissão de Pósitrons
3.
Nutrients ; 15(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36771455

RESUMO

Eicosapentaenoic acid (EPA; 20:5) and docosahexaenoic acid (DHA; 22:6), two omega-3 poly-unsaturated fatty acids (PUFAs), are the main components in oil derived from fish and other marine organisms. EPA and DHA are commercially available as dietary supplements and are considered to be very safe and contribute to guaranteeing human health. Studies report that PUFAs have a role in contrasting neurodegenerative processes related to amyloidogenic proteins, such as ß-amyloid for AD, α-synuclein in PD, and transthyretin (TTR) in TTR amyloidosis. In this context, we investigated if EPA and DHA can interact directly with TTR, binding inside the thyroxin-binding pockets (T4BP) that contribute to the tetramer stabilization. The data obtained showed that EPA and DHA can contribute to stabilizing the TTR tetramer through interactions with T4BP.


Assuntos
Amiloidose , Ácidos Graxos Ômega-3 , Humanos , Animais , Suplementos Nutricionais , Ácido Eicosapentaenoico , Ácidos Docosa-Hexaenoicos
4.
Org Biomol Chem ; 20(43): 8430-8437, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36040477

RESUMO

Studies on the synthetic methodologies and the structural propensity of peptides containing consecutive aza-amino acids are still in their infancy. Here, details of the synthesis and conformational analysis of tripeptides containing two consecutive aza-amino acids are provided. The demonstration that the type I ß-turn folding is induced, even in aqueous media, by the introduction of one or two lateral chains on the diaza-peptide unit is of particular importance for the design of peptidomimetics of biological interest.


Assuntos
Aminoácidos , Peptidomiméticos , Aminoácidos/química , Água , Peptídeos/química , Conformação Molecular
5.
Front Cell Dev Biol ; 9: 729001, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34604227

RESUMO

Amyloid diseases are degenerative pathologies, highly prevalent today because they are closely related to aging, that have in common the erroneous folding of intrinsically disordered proteins (IDPs) which aggregate and lead to cell death. Type 2 Diabetes involves a peptide called human islet amyloid polypeptide (hIAPP), which undergoes a conformational change, triggering the aggregation process leading to amyloid aggregates and fibers rich in ß-sheets mainly found in the pancreas of all diabetic patients. Inhibiting the aggregation of amyloid proteins has emerged as a relevant therapeutic approach and we have recently developed the design of acyclic flexible hairpins based on peptidic recognition sequences of the amyloid ß peptide (Aß1-42) as a successful strategy to inhibit its aggregation involved in Alzheimer's disease. The present work reports the extension of our strategy to hIAPP aggregation inhibitors. The design, synthesis, conformational analyses, and biophysical evaluations of dynamic ß-hairpin like structures built on a piperidine-pyrrolidine ß-turn inducer are described. By linking to this ß-turn inducer three different arms (i) pentapeptide, (ii) tripeptide, and (iii) α/aza/aza/pseudotripeptide, we demonstrate that the careful selection of the peptide-based arms from the sequence of hIAPP allowed to selectively modulate its aggregation, while the peptide character can be decreased. Biophysical assays combining, Thioflavin-T fluorescence, transmission electronic microscopy, capillary electrophoresis, and mass spectrometry showed that the designed compounds inhibit both the oligomerization and the fibrillization of hIAPP. They are also capable to decrease the aggregation process in the presence of membrane models and to strongly delay the membrane-leakage induced by hIAPP. More generally, this work provides the proof of concept that our rational design is a versatile and relevant strategy for developing efficient and selective inhibitors of aggregation of amyloidogenic proteins.

6.
Chempluschem ; 86(6): 840-851, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33905181

RESUMO

In peptidotriazolamers every second peptide bond is replaced by a 1H-1,2,3-triazole. Such foldamers are expected to bridge the gap in molecular weight between small-molecule drugs and protein-based drugs. Amyloid ß (Aß) aggregates play an important role in Alzheimer's disease. We studied the impact of amide bond replacements by 1,4-disubstituted 1H-1,2,3-triazoles on the inhibitory activity of the aggregation "hot spots" K16 LVFF20 and G39 VVIA42 in Aß(1-42). We found that peptidotriazolamers act as modulators of the Aß(1-42) oligomerization. Some peptidotriazolamers are able to interfere with the formation of toxic early Aß oligomers, depending on the position of the triazoles, which is also supported by computational studies. Preliminary in vitro results demonstrate that a highly active peptidotriazolamer is also able to cross the blood-brain-barrier.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Barreira Hematoencefálica/metabolismo , Fragmentos de Peptídeos/química , Peptídeos/química , Agregados Proteicos/efeitos dos fármacos , Triazóis/química , Amidas/metabolismo , Peptídeos beta-Amiloides/metabolismo , Sobrevivência Celular , Humanos , Modelos Biológicos , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Relação Estrutura-Atividade , Triazóis/metabolismo
7.
Neuropharmacology ; 185: 108453, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33450275

RESUMO

Acid-sensing ion channels (ASICs) are proton-gated cationic channels involved in pain and other processes, underscoring the potential therapeutic value of specific inhibitors such as the three-finger toxin mambalgin-1 (Mamb-1) from snake venom. A low-resolution structure of the human-ASIC1a/Mamb-1 complex obtained by cryo-electron microscopy has been recently reported, implementing the structure of the chicken-ASIC1/Mamb-1 complex previously published. Here we combine structure-activity relationship of both the rat ASIC1a channel and the Mamb-1 toxin with a molecular dynamics simulation to obtain a detailed picture at the level of side-chain interactions of the binding of Mamb-1 on rat ASIC1a channels and of its inhibition mechanism. Fingers I and II of Mamb-1 but not the core of the toxin are required for interaction with the thumb domain of ASIC1a, and Lys-8 of finger I potentially interacts with Tyr-358 in the thumb domain. Mamb-1 does not interfere directly with the pH sensor as previously suggested, but locks by several contacts a key hinge between α4 and α5 helices in the thumb domain of ASIC1a to prevent channel opening. Our results provide an improved model of inhibition of mammalian ASIC1a channels by Mamb-1 and clues for further development of optimized ASIC blockers.


Assuntos
Canais Iônicos Sensíveis a Ácido/química , Canais Iônicos Sensíveis a Ácido/metabolismo , Analgésicos/química , Analgésicos/farmacologia , Venenos Elapídicos/química , Venenos Elapídicos/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Canais Iônicos Sensíveis a Ácido/genética , Animais , Galinhas , Relação Dose-Resposta a Droga , Venenos Elapídicos/genética , Feminino , Dor , Peptídeos/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ratos , Xenopus laevis
8.
Molecules ; 27(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35011320

RESUMO

The aggregation of proteins into amyloid fibers is linked to more than forty still incurable cellular and neurodegenerative diseases such as Parkinson's disease (PD), multiple system atrophy, Alzheimer's disease and type 2 diabetes, among others. The process of amyloid formation is a main feature of cell degeneration and disease pathogenesis. Despite being methodologically challenging, a complete understanding of the molecular mechanism of aggregation, especially in the early stages, is essential to find new biological targets for innovative therapies. Here, we reviewed selected examples on α-syn showing how complementary approaches, which employ different biophysical techniques and models, can better deal with a comprehensive study of amyloid aggregation. In addition to the monomer aggregation and conformational transition hypothesis, we reported new emerging theories regarding the self-aggregation of α-syn, such as the alpha-helix rich tetramer hypothesis, whose destabilization induce monomer aggregation; and the liquid-liquid phase separation hypothesis, which considers a phase separation of α-syn into liquid droplets as a primary event towards the evolution to aggregates. The final aim of this review is to show how multimodal methodologies provide a complete portrait of α-syn oligomerization and can be successfully extended to other protein aggregation diseases.


Assuntos
Agregados Proteicos , Agregação Patológica de Proteínas/etiologia , Agregação Patológica de Proteínas/metabolismo , Multimerização Proteica , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Proteínas Amiloidogênicas/química , Proteínas Amiloidogênicas/metabolismo , Amiloidose , Animais , Suscetibilidade a Doenças , Humanos , Interações Hidrofóbicas e Hidrofílicas , Extração Líquido-Líquido , Modelos Moleculares , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Conformação Proteica , Relação Estrutura-Atividade , alfa-Sinucleína/isolamento & purificação
9.
Bioorg Med Chem ; 28(18): 115673, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32828431

RESUMO

Transthyretin (TTR) is a ß-sheet-rich homotetrameric protein that transports thyroxine (T4) and retinol both in plasma and in cerebrospinal fluid. TTR also interacts with amyloid-ß, playing a protective role in Alzheimer's disease. Dissociation of the native transthyretin (TTR) tetramer is widely accepted as the critical step in TTR amyloids fibrillogenesis, and is responsible for extracellular deposition of amyloid fibrils. Small molecules, able to bind in T4 binding sites and stabilize the TTR tetramer, are interesting tools to treat and prevent systemic ATTR amyloidosis. We report here the synthesis, in vitro evaluation and three-dimensional crystallographic analyses of new monoaryl-derivatives in complex with TTR. Of the derivatives reported here, the best inhibitor of TTR fibrillogenesis, 1d, exhibits an activity similar to diflunisal.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Fármacos Neuroprotetores/síntese química , Pré-Albumina/química , Propionatos/química , Agregados Proteicos/efeitos dos fármacos , Sítios de Ligação , Cristalografia por Raios X , Humanos , Modelos Moleculares , Conformação Molecular , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Pré-Albumina/genética , Pré-Albumina/metabolismo , Propionatos/metabolismo , Propionatos/farmacologia , Ligação Proteica , Relação Estrutura-Atividade
10.
J Enzyme Inhib Med Chem ; 35(1): 1145-1162, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32419519

RESUMO

Natural compounds, such as plant and fruit extracts have shown neuroprotective effect against neurodegenerative diseases. It has been reported that several natural compounds binding to transthyretin (TTR) can be useful in amyloidosis prevention. TTR is a transporter protein that under physiological condition carries thyroxine (T4) and retinol in plasma and in cerebrospinal fluid (CSF); it also has a neuroprotective role against Alzheimer's disease (AD). However, TTR also is an amyloidogenic protein responsible for familial amyloid polyneuropathy (FAP) and familial amyloid cardiomyopathy (FAC). The TTR amyloidogenic potential is speeded up by several point mutations. One therapeutic strategy against TTR amyloidosis is the stabilisation of the native tetramer by natural compounds and small molecules. In this review, we examine the natural products that, starting from 2012 to present, have been studied as a stabiliser of TTR tetramer. In particular, we discussed the chemical and structural features which will be helpful for future drug design of new TTR stabilisers.


Assuntos
Neuropatias Amiloides Familiares/prevenção & controle , Amiloide/metabolismo , Desenho de Fármacos , Fármacos Neuroprotetores/uso terapêutico , Pré-Albumina/metabolismo , Humanos , Fármacos Neuroprotetores/química
11.
Molecules ; 25(10)2020 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-32456156

RESUMO

Alzheimer's disease (AD) represents a progressive amyloidogenic disorder whose advancement is widely recognized to be connected to amyloid-ß peptides and Tau aggregation. However, several other processes likely contribute to the development of AD and some of them might be related to protein-protein interactions. Amyloid aggregates usually contain not only single type of amyloid protein, but also other type of proteins and this phenomenon can be rationally explained by the process of protein cross-seeding and co-assembly. Amyloid cross-interaction is ubiquitous in amyloid fibril formation and so a better knowledge of the amyloid interactome could help to further understand the mechanisms of amyloid related diseases. In this review, we discuss about the cross-interactions of amyloid-ß peptides, and in particular Aß1-42, with other amyloids, which have been presented either as integrated part of Aß neurotoxicity process (such as Tau) or conversely with a preventive role in AD pathogenesis by directly binding to Aß (such as transthyretin, cystatin C and apolipoprotein A1). Particularly, we will focus on all the possible therapeutic strategies aiming to rescue the Aß toxicity by taking inspiration from these protein-protein interactions.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Fragmentos de Peptídeos/metabolismo , Agregação Patológica de Proteínas/genética , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Amiloide/metabolismo , Peptídeos beta-Amiloides/genética , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Cistatina C/genética , Cistatina C/metabolismo , Humanos , Fragmentos de Peptídeos/genética , Pré-Albumina/genética , Pré-Albumina/metabolismo , Mapas de Interação de Proteínas/genética , Proteínas tau/genética , Proteínas tau/metabolismo
12.
Chemistry ; 26(52): 12036-12042, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32297686

RESUMO

Cyclic RGD peptides are well-known ligands of integrins. The integrins αV ß3 and α5 ß1 are involved in angiogenesis, and integrin αV ß3 is abundantly present on cancer cells, thus representing a therapeutic target. Hence, synthetic and biophysical studies continuously are being directed towards the understanding of ligand-integrin interaction. In this context, the development of versatile synthetic strategies to obtain fluorescent building blocks that can add molecular diversity and modular spectral characteristics while not compromising binding affinity or selectivity is a relevant task. An on-resin intramolecular Suzuki-Miyaura cross-coupling (SMC) between l- or d-7-bromotryptophan (7BrTrp) and a phenothiazine (Ptz) boronic acid affords fluorescent cyclic RGD pseudopeptides, c(RGD(W/w)Ptz). Ring closure by SMC establishes a phenothiazine-indole moiety with axial chirality. An array of eight novel compounds has been synthesized, among them one fluorescent compound with good affinity to integrin αV ß3 . The fluorescence properties of the analogues can be efficiently tuned depending on the substituents in Ptz moiety even for fluorescence emission in the visible (red) spectral range.


Assuntos
Oligopeptídeos/química , Fluorescência , Integrina alfaVbeta3 , Ligantes , Fenotiazinas
13.
Org Biomol Chem ; 18(18): 3452-3458, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32091060

RESUMO

A major current issue in medicinal chemistry is the design of small peptide analogues resistant to proteolysis and able to adopt preferential conformations, while preserving the selectivity and efficiency of natural peptides. Whereas the introduction of one aza-Gly in peptides has proven numerous biological and structural interest, the conformational effect of sequential aza-Gly or aza-amino acids bearing side chains has not been investigated. In this work, experimental NMR and X-ray data together with in silico conformational studies reveal that the introduction of two consecutive aza-amino acids in pseudotripeptides induces the formation of stable hydrogen-bonded ß-turn structures. Notably, this stabilization effect relies on the presence of side chains on aza-amino acids, as more flexible conformations are observed with aza-Gly residues. Remarkably, a longer aza/aza/α/aza/aza/α pseudohexapeptide containing substituted aza-amino acids adopts repeated ß-turns conformations which interconvert with a fully helical structure mimicking a 310 helix.


Assuntos
Aminoácidos/química , Compostos Aza/química , Peptídeos/química , Conformação Proteica
14.
J Med Chem ; 59(5): 2025-40, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26789783

RESUMO

How anti-Alzheimer's drug candidates that reduce amyloid 1-42 peptide fibrillization interact with the most neurotoxic species is far from being understood. We report herein the capacity of sugar-based peptidomimetics to inhibit both Aß1-42 early oligomerization and fibrillization. A wide range of bio- and physicochemical techniques, such as a new capillary electrophoresis method, nuclear magnetic resonance, and surface plasmon resonance, were used to identify how these new molecules can delay the aggregation of Aß1-42. We demonstrate that these molecules interact with soluble oligomers in order to maintain the presence of nontoxic monomers and to prevent fibrillization. These compounds totally suppress the toxicity of Aß1-42 toward SH-SY5Y neuroblastoma cells, even at substoichiometric concentrations. Furthermore, demonstration that the best molecule combines hydrophobic moieties, hydrogen bond donors and acceptors, ammonium groups, and a hydrophilic ß-sheet breaker element provides valuable insight for the future structure-based design of inhibitors of Aß1-42 aggregation.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Desenho de Fármacos , Glicopeptídeos/farmacologia , Neuroblastoma/metabolismo , Fragmentos de Peptídeos/metabolismo , Peptidomiméticos , Agregados Proteicos/efeitos dos fármacos , Agregação Patológica de Proteínas/tratamento farmacológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Glicopeptídeos/síntese química , Glicopeptídeos/química , Humanos , Estrutura Molecular , Neuroblastoma/patologia , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica/efeitos dos fármacos , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA