Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Bone Miner Res ; 36(2): 283-297, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32916022

RESUMO

Spondyloepimetaphyseal dysplasias (SEMDs) are a heterogeneous group of disorders with variable growth failure and skeletal impairments affecting the spine and long bone epiphyses and metaphyses. Here we report on four unrelated families with SEMD in which we identified two monoallelic missense variants and one monoallelic splice site variant in RPL13, encoding the ribosomal protein eL13. In two out of four families, we observed autosomal dominant inheritance with incomplete penetrance and variable clinical expressivity; the phenotypes of the mutation-positive subjects ranged from normal height with or without hip dysplasia to severe SEMD with severe short stature and marked skeletal dysplasia. In vitro studies on patient-derived dermal fibroblasts harboring RPL13 missense mutations demonstrated normal eL13 expression, with proper subcellular localization but reduced colocalization with eL28 (p < 0.001). Cellular functional defects in fibroblasts from mutation-positive subjects indicated a significant increase in the ratio of 60S subunits to 80S ribosomes (p = 0.007) and attenuated global translation (p = 0.017). In line with the human phenotype, our rpl13 mutant zebrafish model, generated by CRISPR-Cas9 editing, showed cartilage deformities at embryonic and juvenile stages. These findings extend the genetic spectrum of RPL13 mutations causing this novel human ribosomopathy with variable skeletal features. Our study underscores for the first time incomplete penetrance and broad phenotypic variability in SEMD-RPL13 type and confirms impaired ribosomal function. Furthermore, the newly generated rpl13 mutant zebrafish model corroborates the role of eL13 in skeletogenesis. © 2020 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR)..


Assuntos
Osteocondrodisplasias , Peixe-Zebra , Animais , Variação Biológica da População , Humanos , Proteínas de Neoplasias , Osteocondrodisplasias/diagnóstico por imagem , Osteocondrodisplasias/genética , Linhagem , Proteínas Ribossômicas/genética , Coluna Vertebral , Peixe-Zebra/genética
2.
Cell Signal ; 25(4): 1011-7, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23314175

RESUMO

Two isoforms of sphingosine kinase, SK1 and SK2, catalyze the formation of the bioactive lipid sphingosine 1-phosphate (S1P) in mammalian cells. We have previously shown that treatment of androgen-sensitive LNCaP prostate cancer cells with a non-selective SK isoform inhibitor, 2-(p-hydroxyanilino)-4-(p-chlorophenyl)thiazole (SKi), induces the proteasomal degradation of SK1. This is concomitant with a significant increase in C22:0-ceramide and sphingosine levels and a reduction in S1P levels, resulting in the apoptosis of LNCaP cells. In contrast, we show here that a SK2-selective inhibitor, (R)-FTY720 methyl ether (ROME), increases sphingosine and decreases S1P levels but has no effect on ceramide levels and does not induce apoptosis in LNCaP cells. We also show that several glycolytic metabolites and (R)-S-lactoylglutathione are increased upon treatment of LNCaP cells with SKi, which induces the proteasomal degradation of c-Myc. These changes reflect an indirect antagonism of the Warburg effect. LNCaP cells also respond to SKi by diverting glucose 6-phosphate into the pentose phosphate pathway to provide NADPH, which serves as an antioxidant to counter an oxidative stress response. SKi also promotes the formation of a novel pro-apoptotic molecule called diadenosine 5',5'''-P(1),P(3)-triphosphate (Ap3A), which binds to the tumor suppressor fragile histidine triad protein (FHIT). In contrast, the SK2-selective inhibitor, ROME, induces a reduction in some glycolytic metabolites and does not affect oxidative stress. We conclude that SK1 functions to increase the stability of c-Myc and suppresses Ap3A formation, which might maintain the Warburg effect and cell survival, while SK2 exhibits a non-overlapping function.


Assuntos
Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Linhagem Celular Tumoral , Ceramidas/metabolismo , Ciclina D1/metabolismo , Fosfatos de Dinucleosídeos/metabolismo , Inibidores Enzimáticos/farmacologia , Glicólise/efeitos dos fármacos , Humanos , Lisofosfolipídeos/metabolismo , Masculino , Metaboloma/efeitos dos fármacos , Proteínas Associadas aos Microtúbulos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Poli(ADP-Ribose) Polimerases/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Esfingosina/farmacologia
3.
Br J Pharmacol ; 168(6): 1497-505, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23113536

RESUMO

BACKGROUND AND PURPOSE: Sphingosine kinase catalyses the formation of sphingosine 1-phosphate and is linked with androgen receptor signalling in prostate cancer cells. Therefore, we investigated the effect of sphingosine kinase inhibitors on androgen receptor expression. EXPERIMENTAL APPROACH: Androgen-sensitive LNCaP cells were treated with SKi (2-(p-hydroxyanilino)-4-(p-chlorophenyl)thiazole), which inhibits sphingosine kinases 1 and 2 activity, and the effect on androgen receptor expression was measured. KEY RESULTS: Treatment of cells with SK1 inhibitors reduced the expression of the androgen receptor and prostate-specific antigen, while (R)-FTY720 methyl ether (a sphingosine-kinase-2-selective inhibitor), at a concentration that eliminates sphingosine kinase 2 from cells, had no significant effect on androgen receptor expression. The effect of SKi on androgen receptor expression was independent of the SKi-induced proteasomal degradation of SK1 and was post translational, although androgen receptor mRNA transcript was reduced. Fumonisin B1 (a ceramide synthase inhibitor) also failed to reverse the effect of SKi on androgen receptor expression, thereby excluding a role for ceramide derived from the salvage pathway. The effect of SKi on androgen receptor expression was reversed by N-acetylcysteine, which was used to scavenge reactive oxygen species. CONCLUSION AND IMPLICATIONS: Inhibition of sphingosine kinase 1 activity abrogates androgen receptor signalling via an oxidative stress-induced, p53-independent mechanism in prostate cancer cells. Therefore, SK1 inhibitors may offer therapeutic potential in promoting the removal of AR receptors from prostate cancer cells, resulting in an increased efficacy, which is likely to be superior to inhibitors that simply reversibly inhibit AR signalling.


Assuntos
Regulação para Baixo/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Neoplasias da Próstata/tratamento farmacológico , Receptores Androgênicos/metabolismo , Tiazóis/farmacologia , Antagonistas de Receptores de Andrógenos/química , Antagonistas de Receptores de Andrógenos/farmacologia , Antineoplásicos/antagonistas & inibidores , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Inibidores Enzimáticos/química , Cloridrato de Fingolimode , Sequestradores de Radicais Livres/farmacologia , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Masculino , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Propilenoglicóis/farmacologia , Antígeno Prostático Específico/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , RNA Mensageiro/metabolismo , Receptores Androgênicos/genética , Esfingosina/análogos & derivados , Esfingosina/farmacologia , Tiazóis/antagonistas & inibidores
4.
Biomolecules ; 3(2): 316-33, 2013 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24970170

RESUMO

We have previously shown that treatment of androgen-sensitive LNCaP cells with the sphingosine kinase (SK) inhibitor SKi (2-(p-hydroxyanilino)-4-(p-chlorophenyl)thiazole) induces the proteasomal degradation of two N-terminal variants of SK1 (SK1a and SK1b), increases C22:0-ceramide and diadenosine 5',5'''-P1,P3-triphosphate (Ap3A) and reduces S1P levels, and promotes apoptosis. We have now investigated the effects of three SK inhibitors (SKi, (S)-FTY720 vinylphosphonate, and (R)-FTY720 methyl ether) on metabolite and sphingolipid levels in androgen-sensitive LNCaP and androgen-independent LNCaP-AI prostate cancer cells. The 51 kDa N-terminal variant of SK1 (SK1b) evades the proteasome in LNCaP-AI cells, and these cells do not exhibit an increase in C22:0-ceramide or Ap3A levels and do not undergo apoptosis in response to SKi. In contrast, the SK inhibitor (S)-FTY720 vinylphosphonate induces degradation of SK1b in LNCaP-AI, but not in LNCaP cells. In LNCaP-AI cells, (S)-FTY720 vinylphosphonate induces a small increase in C16:0-ceramide levels and cleavage of polyADPribose polymerase (indicative of apoptosis). Surprisingly, the level of S1P is increased by 7.8- and 12.8-fold in LNCaP and LNCaP-AI cells, respectively, on treatment with (S)-FTY720 vinylphosphonate. Finally, treatment of androgen-sensitive LNCaP cells with the SK2-selective inhibitor (R)-FTY720 methyl ether increases lysophosphatidylinositol levels, suggesting that SK2 may regulate lyso-PI metabolism in prostate cancer cells.

5.
Int J Biochem Cell Biol ; 44(9): 1457-64, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22634604

RESUMO

Sphingosine kinase 1 catalyses the formation of the bioactive lipid, sphingosine 1-phosphate and is a target for anti-cancer agents. We demonstrate here that 2-(p-hydroxyanilino)-4-(p-chlorophenyl)thiazole (SKi, also referred to as SKI-II), FTY720 (Fingolimod), and (S)-FTY720 vinylphosphonate inhibit sphingosine kinase 1 activity with distinct kinetics, indicating that these compounds exhibit different binding modalities with sphingosine kinase 1. Thus, SKi is a mixed inhibitor of sphingosine and ATP binding, whereas FTY720 is competitive with sphingosine and uncompetitive with ATP, and (S)-FTY720 vinylphosphonate is uncompetitive with sphingosine and is a mixed inhibitor with respect to ATP. A novel 'see-saw' model is proposed for the binding of inhibitor to catalytic and allosteric sites, the latter dependent on substrate binding, that provides an explanation for the different inhibitor kinetics. In addition, we demonstrate that the expression level and properties unique to an N-terminal 86 amino-acid isoform variant of sphingosine kinase 1 (SK1b) in prostate cancer cells reduce its sensitivity to SKi-induced proteasomal degradation in comparison to SK1a, i.e. these two N-terminal variants of sphingosine kinase 1 (SK1a and SK1b) have different properties. The reduced sensitivity of SK1b to proteasomal degradation in response to SKi is translated into specific changes in ceramide and S1P levels that leads to apoptosis of androgen-sensitive but not androgen-independent LNCaP prostate cancer cells. Therefore, our proposed 'see-saw' model might be usefully employed in the design of sphingosine kinase inhibitors to promote apoptosis of chemotherapeutic resistant cancer cells.


Assuntos
Inibidores Enzimáticos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Neoplasias da Próstata/patologia , Trifosfato de Adenosina/metabolismo , Sítio Alostérico , Domínio Catalítico , Linhagem Celular Tumoral , Inibidores Enzimáticos/metabolismo , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/química , Isoenzimas/metabolismo , Cinética , Masculino , Fosfotransferases (Aceptor do Grupo Álcool)/química , Complexo de Endopeptidases do Proteassoma/metabolismo
6.
Biochem Soc Trans ; 40(1): 94-100, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22260672

RESUMO

There is an increasing body of evidence demonstrating a critical role for the bioactive lipid S1P (sphingosine 1-phosphate) in cancer. S1P is synthesized and metabolized by a number of enzymes, including sphingosine kinase, S1P lyase and S1P phosphatases. S1P binds to cell-surface G-protein-coupled receptors (S1P1-S1P5) to elicit cell responses and can also regulate, by direct binding, a number of intracellular targets such as HDAC (histone deacetylase) 1/2 to induce epigenetic regulation. S1P is involved in cancer progression including cell transformation/oncogenesis, cell survival/apoptosis, cell migration/metastasis and tumour microenvironment neovascularization. In the present paper, we describe our research findings regarding the correlation of sphingosine kinase 1 and S1P receptor expression in tumours with clinical outcome and we define some of the molecular mechanisms underlying the involvement of sphingosine kinase 1 and S1P receptors in the formation of a cancer cell migratory phenotype. The role of sphingosine kinase 1 in the acquisition of chemotherapeutic resistance and the interaction of S1P receptors with oncogenes such as HER2 is also reviewed. We also discuss novel aspects of the use of small-molecule inhibitors of sphingosine kinase 1 in terms of allosterism, ubiquitin-proteasomal degradation of sphingosine kinase 1 and anticancer activity. Finally, we describe how S1P receptor-modulating agents abrogate S1P receptor-receptor tyrosine kinase interactions, with potential to inhibit growth-factor-dependent cancer progression.


Assuntos
Lisofosfolipídeos/metabolismo , Neoplasias/metabolismo , Transdução de Sinais , Esfingosina/análogos & derivados , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Oncogenes , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/metabolismo
8.
J Biol Chem ; 286(21): 18633-40, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21464128

RESUMO

Sphingosine kinase 1 (SK1) catalyzes the conversion of sphingosine to the bioactive lipid sphingosine 1-phosphate. We have previously demonstrated that FTY720 and (S)-FTY720 vinylphosphonate are novel inhibitors of SK1 activity. Here, we show that (S)-FTY720 vinylphosphonate binds to a putative allosteric site in SK1 contingent on formation of the enzyme-sphingosine complex. We report that SK1 is an oligomeric protein (minimally a dimer) containing noncooperative catalytic sites and that the allosteric site exerts an autoinhibition of the catalytic site. A model is proposed in which (S)-FTY720 vinylphosphonate binding to and stabilization of the allosteric site might enhance the autoinhibitory effect on SK1 activity. Further evidence for the existence of allosteric site(s) in SK1 was demonstrated by data showing that two new FTY720 analogues (a conjugate of sphingosine with a fluorophore and (S)-FTY720 regioisomer) increased SK1 activity, suggesting relief of autoinhibition of SK1 activity. Comparisons with the SK1 inhibitor, SKi or siRNA knockdown of SK1 indicated that (S)-FTY720 vinylphosphonate and FTY720 behave as typical SK1 inhibitors in preventing sphingosine 1-phosphate-stimulated rearrangement of actin in MCF-7 cells. These findings are discussed in relation to the anticancer properties of SK1 inhibitors.


Assuntos
Actinas/metabolismo , Neoplasias da Mama/enzimologia , Inibidores Enzimáticos/farmacologia , Proteínas de Neoplasias , Fosfotransferases (Aceptor do Grupo Álcool) , Propilenoglicóis/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Esfingosina/análogos & derivados , Regulação Alostérica/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Domínio Catalítico , Linhagem Celular Tumoral , Inibidores Enzimáticos/química , Feminino , Cloridrato de Fingolimode , Humanos , Imunossupressores/química , Imunossupressores/farmacologia , Lisofosfolipídeos/metabolismo , Modelos Químicos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Propilenoglicóis/química , Esfingosina/química , Esfingosina/metabolismo , Esfingosina/farmacologia
9.
J Biol Chem ; 285(50): 38841-52, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-20926375

RESUMO

Sphingosine kinase 1 (SK1) is an enzyme that catalyzes the phosphorylation of sphingosine to produce the bioactive lipid sphingosine 1-phosphate (S1P). We demonstrate here that the SK1 inhibitor, SKi (2-(p-hydroxyanilino)-4-(p-chlorophenyl)thiazole) induces the proteasomal degradation of SK1 in human pulmonary artery smooth muscle cells, androgen-sensitive LNCaP prostate cancer cells, MCF-7 and MCF-7 HER2 breast cancer cells and that this is likely mediated by ceramide as a consequence of catalytic inhibition of SK1 by SKi. Moreover, SK1 is polyubiquitinated under basal conditions, and SKi appears to increase the degradation of SK1 by activating the proteasome. In addition, the proteasomal degradation of SK1a and SK1b in androgen-sensitive LNCaP cells is associated with the induction of apoptosis. However, SK1b in LNCaP-AI cells (androgen-independent) is less sensitive to SKi-induced proteasomal degradation and these cells are resistant to SKi-induced apoptosis, thereby implicating the ubiquitin-proteasomal degradation of SK1 as an important mechanism controlling cell survival.


Assuntos
Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Complexo de Endopeptidases do Proteassoma/metabolismo , Tiazóis/farmacologia , Apoptose , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Densitometria , Feminino , Humanos , Masculino , Neoplasias da Próstata/metabolismo , Ubiquitina/química
10.
Cell Signal ; 22(10): 1536-42, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20570726

RESUMO

Sphingosine kinase 1 (SK1) is an enzyme that catalyses the phosphorylation of sphingosine to produce the bioactive lipid sphingosine 1-phosphate (S1P). We demonstrate here that FTY720 (Fingolimod) and (S)-FTY720 vinylphosphonate are novel inhibitors of SK1 catalytic activity and induce the proteasomal degradation of this enzyme in human pulmonary artery smooth muscle cells, MCF-7 breast cancer cells and androgen-independent LNCaP-AI prostate cancer cells. Proteasomal degradation of SK1 in response to FTY720 and (S)-FTY720 vinylphosphonate is associated with the down-regulation of the androgen receptor in LNCaP-AI cells. (S)-FTY720 vinylphosphonate also induces the apoptosis of these cells. These findings indicate that SK1 is involved in protecting LNCaP-AI from apoptosis. This protection might be mediated by so-called 'inside-out' signalling by S1P, as LNCaP-AI cells exhibit increased expression of S1P(2/3) receptors and reduced lipid phosphate phosphatase expression (compared with androgen-sensitive LNCaP cells) thereby potentially increasing the bioavailability of S1P at S1P(2/3) receptors.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Propilenoglicóis/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Esfingosina/análogos & derivados , Compostos de Vinila/farmacologia , Androgênios/fisiologia , Antineoplásicos/química , Neoplasias da Mama/enzimologia , Linhagem Celular Tumoral , Células Cultivadas , Resistencia a Medicamentos Antineoplásicos , Inibidores Enzimáticos/química , Feminino , Cloridrato de Fingolimode , Humanos , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/enzimologia , Organofosfonatos , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Propilenoglicóis/química , Neoplasias da Próstata/enzimologia , Artéria Pulmonar/citologia , Esfingosina/química , Esfingosina/farmacologia , Estereoisomerismo , Compostos de Vinila/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA