Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 60(36): 19897-19904, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34241943

RESUMO

The general perception of viruses is that they are small in terms of size and genome, and that they hijack the host machinery to glycosylate their capsid. Giant viruses subvert all these concepts: their particles are not small, and their genome is more complex than that of some bacteria. Regarding glycosylation, this concept has been already challenged by the finding that Chloroviruses have an autonomous glycosylation machinery that produces oligosaccharides similar in size to those of small viruses (6-12 units), albeit different in structure compared to the viral counterparts. We report herein that Mimivirus possesses a glycocalyx made of two different polysaccharides, now challenging the concept that all viruses coat their capsids with oligosaccharides of discrete size. This discovery contradicts the paradigm that such macromolecules are absent in viruses, blurring the boundaries between giant viruses and the cellular world and opening new avenues in the field of viral glycobiology.


Assuntos
Mimiviridae/metabolismo , Polissacarídeos/biossíntese , Glicosilação , Mimiviridae/química , Polissacarídeos/química
2.
J Biol Chem ; 292(18): 7385-7394, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28314774

RESUMO

The giant virus Mimivirus encodes an autonomous glycosylation system that is thought to be responsible for the formation of complex and unusual glycans composing the fibers surrounding its icosahedral capsid, including the dideoxyhexose viosamine. Previous studies have identified a gene cluster in the virus genome, encoding enzymes involved in nucleotide-sugar production and glycan formation, but the functional characterization of these enzymes and the full identification of the glycans found in viral fibers remain incomplete. Because viosamine is typically found in acylated forms, we suspected that one of the genes might encode an acyltransferase, providing directions to our functional annotations. Bioinformatic analyses indicated that the L142 protein contains an N-terminal acyltransferase domain and a predicted C-terminal glycosyltransferase. Sequence analysis of the structural model of the L142 N-terminal domain indicated significant homology with some characterized sugar acetyltransferases that modify the C-4 amino group in the bacillosamine or perosamine biosynthetic pathways. Using mass spectrometry and NMR analyses, we confirmed that the L142 N-terminal domain is a sugar acetyltransferase, catalyzing the transfer of an acetyl moiety from acetyl-CoA to the C-4 amino group of UDP-d-viosamine. The presence of acetylated viosamine in vivo has also been confirmed on the glycosylated viral fibers, using GC-MS and NMR. This study represents the first report of a virally encoded sugar acetyltransferase.


Assuntos
Aciltransferases/química , Proteínas do Capsídeo/química , Mimiviridae/enzimologia , Aciltransferases/metabolismo , Proteínas do Capsídeo/metabolismo , Glicosilação , Domínios Proteicos
3.
Glycobiology ; 24(1): 51-61, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24107487

RESUMO

Mimivirus is a giant DNA virus belonging to the Megaviridae family and infecting unicellular Eukaryotes of the genus Acanthamoeba. The viral particles are characterized by heavily glycosylated surface fibers. Several experiments suggest that Mimivirus and other related viruses encode an autonomous glycosylation system, forming viral glycoproteins independently of their host. In this study, we have characterized three Mimivirus proteins involved in the de novo uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) production: a glutamine-fructose-6-phosphate transaminase (CDS L619), a glucosamine-6-phosphate N-acetyltransferase (CDS L316) and a UDP-GlcNAc pyrophosphorylase (CDS R689). Sequence and enzymatic analyses have revealed some unique features of the viral pathway. While it follows the eukaryotic-like strategy, it also shares some properties of the prokaryotic pathway. Phylogenetic analyses revealed that the Megaviridae enzymes cluster in monophyletic groups, indicating that they share common ancestors, but did not support the hypothesis of recent acquisitions from one of the known hosts. Rather, viral clades branched at deep nodes in phylogenetic trees, forming independent clades outside sequenced cellular organisms. The intermediate properties between the eukaryotic and prokaryotic pathways, the phylogenetic analyses and the fact that these enzymes are shared between most of the known members of the Megaviridae family altogether suggest that the viral pathway has an ancient origin, resulting from lateral transfers of cellular genes early in the Megaviridae evolution, or from vertical inheritance from a more complex cellular ancestor (reductive evolution hypothesis). The identification of a virus-encoded UDP-GlcNAc pathway reinforces the concept that GlcNAc is a ubiquitous sugar representing a universal and fundamental process in all organisms.


Assuntos
Evolução Molecular , Transferência Genética Horizontal , Mimiviridae/enzimologia , Filogenia , Uridina Difosfato Ácido N-Acetilmurâmico/biossíntese , Proteínas Virais/metabolismo , Acanthamoeba/virologia , Mimiviridae/genética , Uridina Difosfato Ácido N-Acetilmurâmico/genética , Proteínas Virais/genética
4.
PLoS One ; 8(10): e76540, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24130780

RESUMO

Fucosyltransferase 8 (FUT8) catalyzes the transfer of α1,6-linked fucose to the first N-acetylglucosamine in N-linked glycans (core fucosylation). Increased core fucosylation has been reported during hepatocarcinogenesis, in both cell-associated and secreted proteins. Accordingly, increased core fucosylation of α-fetoprotein and α1-antitrypsin is currently used as a diagnostic and prognostic indicator. The present study provides new evidences that FUT8 can be regulated also through miRNA-mediated mechanisms. Using microRNA/target prediction programs, we identified miR-122 and miR-34a seed regions in the 3' untranslated region (3'UTR) of FUT8. Then we used human and rodents hepatocarcinoma cell lines to evaluate the impact of transfection of miR-122 and miR-34a mimics on FUT8 mRNA and protein levels. This study demonstrated that forced expression of these miRNAs is able to induce a decrease of FUT8 levels and also to affect core fucosylation of secreted proteins. The ability of miR-122 and miR-34a to specifically interact with and regulate the 3'UTR of FUT8 was demonstrated via a luciferase reporter assay. Since miR-122 and miR-34a downregulation is a common feature in spontaneous human hepatocarcinoma, our finding that these miRNAs are able to target FUT8 3'UTR suggests that, together with transcriptional and other post-transcriptional systems, a miRNA-mediated mechanism could also be involved in the increased core fucosylation observed in liver tumors. Moreover, these findings also point out that miRNAs may be widely involved in the regulation of glycosylation machinery.


Assuntos
Carcinoma Hepatocelular/patologia , Fucosiltransferases/genética , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Hepáticas/patologia , MicroRNAs/genética , Fucose/metabolismo , Fucosiltransferases/metabolismo , Células HeLa , Células Hep G2 , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA