Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Lung Cancer ; 194: 107890, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39003936

RESUMO

INTRODUCTION: Histological confirmation of a lung tumor is the prerequisite for treatment planning. It has been suspected that CT-guided needle biopsy (CTGNB) exposes the patient to a higher risk of pleural recurrence. However, the distance between tumor and pleura has largely been neglected as a possible confounder when comparing CTGNB to bronchoscopy. METHODS: All patients with lung cancer histologically confirmed by bronchoscopy or CTGNB between 2010 and 2020 were enrolled and studied. Patients' medical histories, radiologic and pathologic findings and surgical records were reviewed. Pleural recurrence was diagnosed by pleural biopsy, fluid cytology, or by CT chest imaging showing progressive pleural nodules. RESULTS: In this retrospective unicenter analysis, 844 patients underwent curative resection for early-stage lung cancer between 2010 and 2020. Median follow-up was 47.5 months (3-137). 27 patients (3.2 %) with ipsilateral pleural recurrence (IPR) were identified. The distance of the tumor to the pleura was significantly smaller in patients who underwent CTGNB. A tendency of increased risk of IPR was observed in tumors located in the lower lobe (HR: 2.18 [±0.43], p = 0.068), but only microscopic pleural invasion was a significant independent predictive factor for increased risk of IPR (HR: 5.33 [± 0.51], p = 0.001) by multivariate cox analysis. Biopsy by CTGNB did not affect IPR (HR: 1.298 [± 0.39], p = 0.504). CONCLUSION: CTGNB is safe and not associated with an increased incidence of IPR in our cohort of patients. This observation remains to be validated in a larger multicenter patient cohort.


Assuntos
Biópsia Guiada por Imagem , Neoplasias Pulmonares , Neoplasias Pleurais , Tomografia Computadorizada por Raios X , Humanos , Masculino , Feminino , Neoplasias Pleurais/secundário , Neoplasias Pleurais/patologia , Neoplasias Pleurais/diagnóstico por imagem , Neoplasias Pleurais/diagnóstico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/diagnóstico , Estudos Retrospectivos , Idoso , Tomografia Computadorizada por Raios X/métodos , Biópsia Guiada por Imagem/métodos , Pessoa de Meia-Idade , Pleura/patologia , Pleura/diagnóstico por imagem , Recidiva Local de Neoplasia/patologia , Seguimentos , Idoso de 80 Anos ou mais , Biópsia por Agulha/métodos , Adulto
2.
AJNR Am J Neuroradiol ; 45(4): 453-460, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38453410

RESUMO

BACKGROUND AND PURPOSE: MR perfusion has shown value in the evaluation of posttreatment high-grade gliomas, but few studies have shown its impact on the consistency and confidence of neuroradiologists' interpretation in routine clinical practice. We evaluated the impact of adding MR perfusion metrics to conventional contrast-enhanced MR imaging in posttreatment high-grade glioma surveillance imaging. MATERIALS AND METHODS: This retrospective study included 45 adults with high-grade gliomas who had posttreatment perfusion MR imaging. Four neuroradiologists assigned Brain Tumor Reporting and Data System scores for each examination on the basis of the interpretation of contrast-enhanced MR imaging and then after the addition of arterial spin-labeling-CBF, DSC-relative CBV, and DSC-fractional tumor burden. Interrater agreement and rater agreement with a multidisciplinary consensus group were assessed with κ statistics. Raters used a 5-point Likert scale to report confidence scores. The frequency of clinically meaningful score changes resulting from the addition of each perfusion metric was determined. RESULTS: Interrater agreement was moderate for contrast-enhanced MR imaging alone (κ = 0.63) and higher with perfusion metrics (arterial spin-labeling-CBF, κ = 0.67; DSC-relative CBV, κ = 0.66; DSC-fractional tumor burden, κ = 0.70). Agreement between raters and consensus was highest with DSC-fractional tumor burden (κ = 0.66-0.80). Confidence scores were highest with DSC-fractional tumor burden. Across all raters, the addition of perfusion resulted in clinically meaningful interpretation changes in 2%-20% of patients compared with contrast-enhanced MR imaging alone. CONCLUSIONS: Adding perfusion to contrast-enhanced MR imaging improved interrater agreement, rater agreement with consensus, and rater confidence in the interpretation of posttreatment high-grade glioma MR imaging, with the highest agreement and confidence scores seen with DSC-fractional tumor burden. Perfusion MR imaging also resulted in interpretation changes that could change therapeutic management in up to 20% of patients.


Assuntos
Neoplasias Encefálicas , Glioma , Adulto , Humanos , Estudos Retrospectivos , Marcadores de Spin , Glioma/diagnóstico por imagem , Glioma/terapia , Glioma/patologia , Imageamento por Ressonância Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Perfusão , Meios de Contraste , Circulação Cerebrovascular
3.
J Trauma Acute Care Surg ; 97(3): 407-413, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38523120

RESUMO

INTRODUCTION: Clinical clearance of a child's cervical spine after trauma is often challenging because of impaired mental status or an unreliable neurologic examination. Magnetic resonance imaging (MRI) is the criterion standard for excluding ligamentous injury in children but is constrained by long image acquisition times and frequent need for anesthesia. Limited-sequence magnetic resonance imaging (LSMRI) is used in evaluating the evolution of traumatic brain injury and may also be useful for cervical spine clearance while potentially avoiding the need for anesthesia. The purpose of this study was to assess the sensitivity and negative predictive value of LSMRI as compared with criterion standard full-sequence MRI as a screening tool to rule out clinically significant ligamentous cervical spine injury. METHODS: We conducted a 10-center, 5-year retrospective cohort study (2017-2021) of all children (0-18 years) with a cervical spine MRI after blunt trauma. Magnetic resonance imaging images were rereviewed by a study pediatric radiologist at each site to determine if the presence of an injury could be identified on limited sequences alone. Unstable cervical spine injury was determined by study neurosurgeon review at each site. RESULTS: We identified 2,663 children younger than 18 years who underwent an MRI of the cervical spine with 1,008 injuries detected on full-sequence studies. The sensitivity and negative predictive value of LSMRI were both >99% for detecting any injury and 100% for detecting any unstable injury. Young children (younger than 5 years) were more likely to be electively intubated or sedated for cervical spine MRI. CONCLUSION: Limited-sequence magnetic resonance imaging is reliably detects clinically significant ligamentous injury in children after blunt trauma. To decrease anesthesia use and minimize MRI time, trauma centers should develop LSMRI screening protocols for children without a reliable neurologic examination. LEVEL OF EVIDENCE: Diagnostic Test/Criteria; Level III.


Assuntos
Vértebras Cervicais , Imageamento por Ressonância Magnética , Sensibilidade e Especificidade , Traumatismos da Coluna Vertebral , Humanos , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos , Criança , Pré-Escolar , Vértebras Cervicais/lesões , Vértebras Cervicais/diagnóstico por imagem , Adolescente , Feminino , Lactente , Masculino , Traumatismos da Coluna Vertebral/diagnóstico por imagem , Traumatismos da Coluna Vertebral/cirurgia , Ferimentos não Penetrantes/diagnóstico por imagem , Ferimentos não Penetrantes/cirurgia , Valor Preditivo dos Testes , Recém-Nascido
4.
J Magn Reson Imaging ; 59(4): 1349-1357, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37515518

RESUMO

BACKGROUND: Cerebrovascular reserve (CVR) reflects the capacity of cerebral blood flow (CBF) to change following a vasodilation challenge. Decreased CVR is associated with a higher stroke risk in patients with cerebrovascular diseases. While revascularization can improve CVR and reduce this risk in adult patients with vasculopathy such as those with Moyamoya disease, its impact on hemodynamics in pediatric patients remains to be elucidated. Arterial spin labeling (ASL) is a quantitative MRI technique that can measure CBF, CVR, and arterial transit time (ATT) non-invasively. PURPOSE: To investigate the short- and long-term changes in hemodynamics after bypass surgeries in patients with Moyamoya disease. STUDY TYPE: Longitudinal. POPULATION: Forty-six patients (11 months-18 years, 28 females) with Moyamoya disease. FIELD STRENGTH/SEQUENCE: 3-T, single- and multi-delay ASL, T1-weighted, T2-FLAIR, 3D MRA. ASSESSMENT: Imaging was performed 2 weeks before and 1 week and 6 months after surgical intervention. Acetazolamide was employed to induce vasodilation during the imaging procedure. CBF and ATT were measured by fitting the ASL data to the general kinetic model. CVR was computed as the percentage change in CBF. The mean CBF, ATT, and CVR values were measured in the regions affected by vasculopathy. STATISTICAL TESTS: Pre- and post-revascularization CVR, CBF, and ATT were compared for different regions of the brain. P-values <0.05 were considered statistically significant. RESULTS: ASL-derived CBF in flow territories affected by vasculopathy significantly increased after bypass by 41 ± 31% within a week. At 6 months, CBF significantly increased by 51 ± 34%, CVR increased by 68 ± 33%, and ATT was significantly reduced by 6.6 ± 2.9%. DATA CONCLUSION: There may be short- and long-term improvement in the hemodynamic parameters of pediatric Moyamoya patients after bypass surgery. EVIDENCE LEVEL: 4 TECHNICAL EFFICACY: Stage 2.


Assuntos
Doença de Moyamoya , Adulto , Feminino , Humanos , Criança , Doença de Moyamoya/diagnóstico por imagem , Doença de Moyamoya/cirurgia , Imageamento por Ressonância Magnética/métodos , Encéfalo , Hemodinâmica , Circulação Cerebrovascular/fisiologia , Marcadores de Spin
8.
Front Neuroinform ; 16: 1056068, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36743439

RESUMO

Introduction: Management of patients with brain metastases is often based on manual lesion detection and segmentation by an expert reader. This is a time- and labor-intensive process, and to that end, this work proposes an end-to-end deep learning segmentation network for a varying number of available MRI available sequences. Methods: We adapt and evaluate a 2.5D and a 3D convolution neural network trained and tested on a retrospective multinational study from two independent centers, in addition, nnU-Net was adapted as a comparative benchmark. Segmentation and detection performance was evaluated by: (1) the dice similarity coefficient, (2) a per-metastases and the average detection sensitivity, and (3) the number of false positives. Results: The 2.5D and 3D models achieved similar results, albeit the 2.5D model had better detection rate, whereas the 3D model had fewer false positive predictions, and nnU-Net had fewest false positives, but with the lowest detection rate. On MRI data from center 1, the 2.5D, 3D, and nnU-Net detected 79%, 71%, and 65% of all metastases; had an average per patient sensitivity of 0.88, 0.84, and 0.76; and had on average 6.2, 3.2, and 1.7 false positive predictions per patient, respectively. For center 2, the 2.5D, 3D, and nnU-Net detected 88%, 86%, and 78% of all metastases; had an average per patient sensitivity of 0.92, 0.91, and 0.85; and had on average 1.0, 0.4, and 0.1 false positive predictions per patient, respectively. Discussion/Conclusion: Our results show that deep learning can yield highly accurate segmentations of brain metastases with few false positives in multinational data, but the accuracy degrades for metastases with an area smaller than 0.4 cm2.

9.
Neuro Oncol ; 24(4): 601-609, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34487172

RESUMO

BACKGROUND: Non-invasive differentiation between schwannomas and neurofibromas is important for appropriate management, preoperative counseling, and surgical planning, but has proven difficult using conventional imaging. The objective of this study was to develop and evaluate machine learning approaches for differentiating peripheral schwannomas from neurofibromas. METHODS: We assembled a cohort of schwannomas and neurofibromas from 3 independent institutions and extracted high-dimensional radiomic features from gadolinium-enhanced, T1-weighted MRI using the PyRadiomics package on Quantitative Imaging Feature Pipeline. Age, sex, neurogenetic syndrome, spontaneous pain, and motor deficit were recorded. We evaluated the performance of 6 radiomics-based classifier models with and without clinical features and compared model performance against human expert evaluators. RESULTS: One hundred and seven schwannomas and 59 neurofibromas were included. The primary models included both clinical and imaging data. The accuracy of the human evaluators (0.765) did not significantly exceed the no-information rate (NIR), whereas the Support Vector Machine (0.929), Logistic Regression (0.929), and Random Forest (0.905) classifiers exceeded the NIR. Using the method of DeLong, the AUCs for the Logistic Regression (AUC = 0.923) and K Nearest Neighbor (AUC = 0.923) classifiers were significantly greater than the human evaluators (AUC = 0.766; p = 0.041). CONCLUSIONS: The radiomics-based classifiers developed here proved to be more accurate and had a higher AUC on the ROC curve than expert human evaluators. This demonstrates that radiomics using routine MRI sequences and clinical features can aid in differentiation of peripheral schwannomas and neurofibromas.


Assuntos
Neurilemoma , Neurofibroma , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética/métodos , Neurilemoma/diagnóstico por imagem , Neurofibroma/diagnóstico por imagem , Estudos Retrospectivos
11.
Med Phys ; 48(10): 6020-6035, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34405896

RESUMO

PURPOSE: Magnetic resonance (MR) imaging is an essential diagnostic tool in clinical medicine. Recently, a variety of deep-learning methods have been applied to segmentation tasks in medical images, with promising results for computer-aided diagnosis. For MR images, effectively integrating different pulse sequences is important to optimize performance. However, the best way to integrate different pulse sequences remains unclear. In addition, networks trained with a certain subset of pulse sequences as input are unable to perform when given a subset of those pulse sequences. In this study, we evaluate multiple architectural features and characterize their effects in the task of metastasis segmentation while creating a method to robustly train a network to be able to work given any strict subset of the pulse sequences available during training. METHODS: We use a 2.5D DeepLabv3 segmentation network to segment metastases lesions on brain MR's with four pulse sequence inputs. To study how we can best integrate MR pulse sequences for this task, we consider (1) different pulse sequence integration schemas, combining our features at early, middle, and late points within a deep network, (2) different modes of weight sharing for parallel network branches, and (3) a novel integration level dropout layer, which will allow the networks to be robust to performing inference on input with only a subset of pulse sequences available at the training. RESULTS: We find that levels of integration and modes of weight sharing that favor low variance work best in our regime of small amounts of training data (n = 100). By adding an input-level dropout layer, we could preserve the overall performance of these networks while allowing for inference on inputs with missing pulse sequences. We illustrate not only the generalizability of the network but also the utility of this robustness when applying the trained model to data from a different center, which does not use the same pulse sequences. Finally, we apply network visualization methods to better understand which input features are most important for network performance. CONCLUSIONS: Together, these results provide a framework for building networks with enhanced robustness to missing data while maintaining comparable performance in medical imaging applications.


Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Neoplasias Encefálicas/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Redes Neurais de Computação
12.
Sci Rep ; 11(1): 14377, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34257334

RESUMO

We evaluate the topographic distribution of diffuse midline gliomas and hemispheric high-grade gliomas in children with respect to their normal gene expression patterns and pathologic driver mutation patterns. We identified 19 pediatric patients with diffuse midline or high-grade glioma with preoperative MRI from tumor board review. 7 of these had 500 gene panel mutation testing, 11 patients had 50 gene panel mutation testing and one 343 gene panel testing from a separate institution were included as validation set. Tumor imaging features and gene expression patterns were analyzed using Allen Brain Atlas. Twelve patients had diffuse midline gliomas and seven had hemispheric high-grade gliomas. Three diffuse midline gliomas had the K27M mutation in the tail of histone H3 protein. All patients undergoing 500 gene panel testing had additional mutations, the most common being in ACVR1, PPM1D, and p53. Hemispheric high-grade gliomas had either TP53 or IDH1 mutation and diffuse midline gliomas had H3 K27M-mutation. Gene expression analysis in normal brains demonstrated that genes mutated in diffuse midline gliomas had higher expression along midline structures as compared to the cerebral hemispheres. Our study suggests that topographic location of pediatric diffuse midline gliomas and hemispheric high-grade gliomas correlates with driver mutations of tumor to the endogenous gene expression in that location. This correlation suggests that cellular state that is required for increased gene expression predisposes that location to mutations and defines the driver mutations within tumors that arise from that region.


Assuntos
Neoplasias Encefálicas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Glioma/metabolismo , Mutação , Receptores de Ativinas Tipo I/genética , Neoplasias Encefálicas/genética , Pré-Escolar , Análise Mutacional de DNA , Genômica , Glioma/genética , Histonas/metabolismo , Humanos , Imageamento por Ressonância Magnética , Proteína Fosfatase 2C/genética , Proteína Supressora de Tumor p53/genética , Proteína Nuclear Ligada ao X/genética
14.
Neurosurgery ; 89(3): 509-517, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34131749

RESUMO

BACKGROUND: Clinicoradiologic differentiation between benign and malignant peripheral nerve sheath tumors (PNSTs) has important management implications. OBJECTIVE: To develop and evaluate machine-learning approaches to differentiate benign from malignant PNSTs. METHODS: We identified PNSTs treated at 3 institutions and extracted high-dimensional radiomics features from gadolinium-enhanced, T1-weighted magnetic resonance imaging (MRI) sequences. Training and test sets were selected randomly in a 70:30 ratio. A total of 900 image features were automatically extracted using the PyRadiomics package from Quantitative Imaging Feature Pipeline. Clinical data including age, sex, neurogenetic syndrome presence, spontaneous pain, and motor deficit were also incorporated. Features were selected using sparse regression analysis and retained features were further refined by gradient boost modeling to optimize the area under the curve (AUC) for diagnosis. We evaluated the performance of radiomics-based classifiers with and without clinical features and compared performance against human readers. RESULTS: A total of 95 malignant and 171 benign PNSTs were included. The final classifier model included 21 imaging and clinical features. Sensitivity, specificity, and AUC of 0.676, 0.882, and 0.845, respectively, were achieved on the test set. Using imaging and clinical features, human experts collectively achieved sensitivity, specificity, and AUC of 0.786, 0.431, and 0.624, respectively. The AUC of the classifier was statistically better than expert humans (P = .002). Expert humans were not statistically better than the no-information rate, whereas the classifier was (P = .001). CONCLUSION: Radiomics-based machine learning using routine MRI sequences and clinical features can aid in evaluation of PNSTs. Further improvement may be achieved by incorporating additional imaging sequences and clinical variables into future models.


Assuntos
Neoplasias de Bainha Neural , Neurofibrossarcoma , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Neoplasias de Bainha Neural/diagnóstico por imagem , Estudos Retrospectivos
15.
Neurooncol Pract ; 8(1): 91-97, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33664973

RESUMO

BACKGROUND: Amino acid PET imaging of brain tumors has been shown to play an important role in predicting tumor grade, delineation of tumor margins, and differentiating tumor recurrence from the background of postradiation changes, but is not commonly used in clinical practice because of high cost. We propose that PET/MRI imaging of patients grouped to the day of tracer radiosynthesis will significantly decrease the cost of PET imaging, which will improve patient access to PET. METHODS: Seventeen patients with either primary brain tumors or metastatic brain tumors were recruited for imaging on 3T PET/MRI and were scanned on 4 separate days in groups of 3 to 5 patients. The first group of consecutively imaged patients contained 3 patients, followed by 2 groups of 5 patients, and a last group of 4 patients. RESULTS: For each of the patients, standard of care gadolinium-enhanced MRI and dynamic PET imaging with 18F-FDOPA amino acid tracer was obtained. The total cost savings of scanning 17 patients in batches of 4 as opposed to individual radiosynthesis was 48.5% ($28 321). Semiquantitative analysis of tracer uptake in normal brain were performed with appropriate accumulation and expected subsequent washout. CONCLUSION: Amino acid PET tracers have been shown to play a critical role in the characterization of brain tumors but their adaptation to clinical practice has been limited because of the high cost of PET. Scheduling patient imaging to maximally use the radiosynthesis of imaging tracer significantly reduces the cost of PET and results in increased availability of PET tracer use in neuro-oncology.

16.
NPJ Digit Med ; 4(1): 33, 2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33619361

RESUMO

The purpose of this study was to assess the clinical value of a deep learning (DL) model for automatic detection and segmentation of brain metastases, in which a neural network is trained on four distinct MRI sequences using an input-level dropout layer, thus simulating the scenario of missing MRI sequences by training on the full set and all possible subsets of the input data. This retrospective, multicenter study, evaluated 165 patients with brain metastases. The proposed input-level dropout (ILD) model was trained on multisequence MRI from 100 patients and validated/tested on 10/55 patients, in which the test set was missing one of the four MRI sequences used for training. The segmentation results were compared with the performance of a state-of-the-art DeepLab V3 model. The MR sequences in the training set included pre-gadolinium and post-gadolinium (Gd) T1-weighted 3D fast spin echo, post-Gd T1-weighted inversion recovery (IR) prepped fast spoiled gradient echo, and 3D fluid attenuated inversion recovery (FLAIR), whereas the test set did not include the IR prepped image-series. The ground truth segmentations were established by experienced neuroradiologists. The results were evaluated using precision, recall, Intersection over union (IoU)-score and Dice score, and receiver operating characteristics (ROC) curve statistics, while the Wilcoxon rank sum test was used to compare the performance of the two neural networks. The area under the ROC curve (AUC), averaged across all test cases, was 0.989 ± 0.029 for the ILD-model and 0.989 ± 0.023 for the DeepLab V3 model (p = 0.62). The ILD-model showed a significantly higher Dice score (0.795 ± 0.104 vs. 0.774 ± 0.104, p = 0.017), and IoU-score (0.561 ± 0.225 vs. 0.492 ± 0.186, p < 0.001) compared to the DeepLab V3 model, and a significantly lower average false positive rate of 3.6/patient vs. 7.0/patient (p < 0.001) using a 10 mm3 lesion-size limit. The ILD-model, trained on all possible combinations of four MRI sequences, may facilitate accurate detection and segmentation of brain metastases on a multicenter basis, even when the test cohort is missing input MRI sequences.

17.
Front Neurol ; 11: 270, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32351445

RESUMO

Early detection of brain metastases and differentiation from other neuropathologies is crucial. Although biopsy is often required for definitive diagnosis, imaging can provide useful information. After treatment commences, imaging is also performed to assess the efficacy of treatment. Contrast-enhanced magnetic resonance imaging (MRI) is the traditional imaging method for the evaluation of brain metastases, as it provides information about lesion size, morphology, and macroscopic properties. Newer MRI sequences have been developed to increase the conspicuity of detecting enhancing metastases. Other advanced MRI techniques, that have the capability to probe beyond the anatomic structure, are available to characterize micro-structures, cellularity, physiology, perfusion, and metabolism. Artificial intelligence provides powerful computational tools for detection, segmentation, classification, prediction, and prognosis. We highlight and review a few advanced MRI techniques for the assessment of brain metastases-specifically for (1) diagnosis, including differentiating between malignancy types and (2) evaluation of treatment response, including the differentiation between radiation necrosis and disease progression.

18.
J Magn Reson Imaging ; 51(1): 175-182, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31050074

RESUMO

BACKGROUND: Detecting and segmenting brain metastases is a tedious and time-consuming task for many radiologists, particularly with the growing use of multisequence 3D imaging. PURPOSE: To demonstrate automated detection and segmentation of brain metastases on multisequence MRI using a deep-learning approach based on a fully convolution neural network (CNN). STUDY TYPE: Retrospective. POPULATION: In all, 156 patients with brain metastases from several primary cancers were included. FIELD STRENGTH: 1.5T and 3T. [Correction added on May 24, 2019, after first online publication: In the preceding sentence, the first field strength listed was corrected.] SEQUENCE: Pretherapy MR images included pre- and postgadolinium T1 -weighted 3D fast spin echo (CUBE), postgadolinium T1 -weighted 3D axial IR-prepped FSPGR (BRAVO), and 3D CUBE fluid attenuated inversion recovery (FLAIR). ASSESSMENT: The ground truth was established by manual delineation by two experienced neuroradiologists. CNN training/development was performed using 100 and 5 patients, respectively, with a 2.5D network based on a GoogLeNet architecture. The results were evaluated in 51 patients, equally separated into those with few (1-3), multiple (4-10), and many (>10) lesions. STATISTICAL TESTS: Network performance was evaluated using precision, recall, Dice/F1 score, and receiver operating characteristic (ROC) curve statistics. For an optimal probability threshold, detection and segmentation performance was assessed on a per-metastasis basis. The Wilcoxon rank sum test was used to test the differences between patient subgroups. RESULTS: The area under the ROC curve (AUC), averaged across all patients, was 0.98 ± 0.04. The AUC in the subgroups was 0.99 ± 0.01, 0.97 ± 0.05, and 0.97 ± 0.03 for patients having 1-3, 4-10, and >10 metastases, respectively. Using an average optimal probability threshold determined by the development set, precision, recall, and Dice score were 0.79 ± 0.20, 0.53 ± 0.22, and 0.79 ± 0.12, respectively. At the same probability threshold, the network showed an average false-positive rate of 8.3/patient (no lesion-size limit) and 3.4/patient (10 mm3 lesion size limit). DATA CONCLUSION: A deep-learning approach using multisequence MRI can automatically detect and segment brain metastases with high accuracy. LEVEL OF EVIDENCE: 3 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2020;51:175-182.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/secundário , Aprendizado Profundo , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Sensibilidade e Especificidade
19.
Top Magn Reson Imaging ; 26(2): 57-65, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28277465

RESUMO

Newer neuroimaging technology has moved beyond pure anatomical imaging and ventured into functional and physiological imaging. Perfusion magnetic resonance imaging (PWI), which depicts hemodynamic conditions of the brain at the microvascular level, has an increasingly important role in clinical central nervous system applications. This review provides an overview of the established role of PWI in brain tumor and cerebrovascular imaging, as well as some emerging applications in neuroimaging. PWI allows better characterization of brain tumors, grading, and monitoring. In acute stroke imaging, PWI is utilized to distinguish penumbra from infarcted tissue. PWI is a promising tool in the assessment of neurodegenerative and neuropsychiatric diseases, although its clinical role is not yet defined.


Assuntos
Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Neuroimagem Funcional/métodos , Angiografia por Ressonância Magnética/métodos , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/diagnóstico por imagem , Circulação Cerebrovascular , Humanos
20.
J Surg Res ; 207: 13-21, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27979468

RESUMO

BACKGROUND: Sarcopenia, a loss of skeletal muscle mass associated with aging, is a practical measure of frailty and has been previously identified as a predictor of outcomes in surgical cohorts including cancer resection and elderly patients. We hypothesized that sarcopenia, as measured by preoperative computerized tomography (CT) scan, predicts mortality and morbidity in emergent laparotomy. METHODS: Institutional American College of Surgeons National Surgical Quality Improvement Program data were queried for adult patients who underwent open emergency abdominal surgery between 2008 and 2013. Patients with abdominal CT scans within 30 d before surgery were included, and cross-sectional areas of the psoas muscles at vertebral level L4 were summed, normalized by patient height, and stratified by sex. The influence of this total psoas area (TPA) on postoperative morbidity and mortality was evaluated using univariate and multivariate analysis. RESULTS: Of 781 surgeries, 593 (75.9%) had appropriate preoperative CT scans. Median patient age was 61 years old, median TPA was 1719 mm2, and median body mass index was 26.7. Univariate analysis demonstrated a significant association between TPA and total postoperative morbidity (P = 0.0133), increased length of stay (<0.0001), and 90-d mortality (P = 0.0008) but not 30-d mortality (P = 0.26). In multivariate analysis, TPA lost its significance compared to more influential predictors of mortality, including American Society of Anesthesiologists classification. CONCLUSIONS: Sarcopenia, as measured by TPA, significantly predicted mortality in univariate analysis but lost significance in multivariate analysis when factors such as American Society of Anesthesiologists score were included. Because TPA is readily available at no additional risk or cost, it is a convenient additional tool for preoperative risk assessment and counseling.


Assuntos
Laparotomia/mortalidade , Complicações Pós-Operatórias/etiologia , Sarcopenia/complicações , Adulto , Idoso , Idoso de 80 Anos ou mais , Emergências , Feminino , Seguimentos , Humanos , Cuidados Intraoperatórios , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Avaliação de Resultados em Cuidados de Saúde , Complicações Pós-Operatórias/epidemiologia , Período Pré-Operatório , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Sarcopenia/diagnóstico por imagem , Análise de Sobrevida , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA