Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Food Sci Technol ; 61(9): 1800-1810, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39049910

RESUMO

The effects of three strains of lactic acid bacteria (Lactobacillus plantarum, Lactobacillus rhamnosus, and Streptococcus thermophilus) on viable counts, physicochemical indicators, phenolic profiles, antioxidant capacities, and volatile compounds in purple sweet potato juice were investigated during fermentation. The results showed the viable count of three bacteria increased and exceeded 11 log CFU/mL after fermentation. At the end of fermentation, the purple sweet potato juice exhibited an increase in total phenolic and flavonoid content. In addition, lactic acid bacteria fermentation changed the phenolic profiles and enhanced antioxidant capacities. Moreover, Pearson's correlation analysis showed that DPPH, ABTS, and hydroxyl radical scavenging capacities were positively correlated with caffeic acid and vanillic acid content (p < 0.05). Furthermore, lactic acid bacteria fermentation improved the aroma complexity and sensory quality of purple sweet potato juice. In conclusion, this study provided useful information for the development of purple sweet potato juice fermented by lactic acid bacteria. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-024-05959-5.

2.
Nanotechnology ; 32(50)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34469878

RESUMO

Borage seed oil (BSO), peppermint oil (PO) and lycopene (LC) have accomplished a lot of interest due to their therapeutic benefits in the food and pharmaceutical sectors. However, their employment in functional food products and dietary supplements is still precluded by their high susceptibility to oxidation. Thus, the encapsulation can be applied as a promising strategy to overcome these limits. In the present study, doubly layered water/oil/water (W/O/W) nanoemulsions were equipped using purity gum ultra (PGU), soy protein isolate (SPI), pectin (PC), whey protein isolate (WPI) and WPI-PC and SPI-PC complexes, and their physico-chemical properties were investigated. Our aim was to investigate the influence of natural biopolymers as stabilizers on the physicochemical properties of nanoemulsified BSO, PO and lycopene thru W/O/W emulsions. The droplet size of the fabricated emulsions coated with PGU, WPI, SPI, PC, WPI-PC, and SPI-PC was 156.2, 265.9, 254.7, 168.5, 559.5 and 656.1 nm, correspondingly. The encapsulation efficiency of the entrapped bioactives for powders embedded by PGU, WPI, SPI, PC, WPI-PC, and SPI-PC was 95.21%, 94.67%, 97.24%, 92.19%, 90.07% and 92.34%, respectively. In addition, peroxide and p-anisidine values were used to measure the antioxidant potential of the entrapped bioactive compounds during storage, which was compared to synthetic antioxidant and bare natural antioxidant. The collected findings revealed that oxidation occurred in oils encompassing entrapped bioactive compounds, but at a lower extent than for non-encapsulated bioactives. In summary, the findings obtained from current research prove that the nanoencapsulation of BSO surrounded by innermost aqueous stage of W/O/W improved its stability as well as allowed a controlled release of the entrapped bioactives. Thus, the obtained BSO-PO-based systems could be successfully used for further fortification of food-stuffs.

3.
Int J Biol Macromol ; 186: 820-828, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34280445

RESUMO

Recently, food industries are directing on the promotion of innovative food matrices fortified with bioactive compounds in order to enhance the consumer's health. Octenyl succinic anhydride modified starches (OSA-MS) such as Hi-cap100 (HCP) and purity gum 2000 (PUG) were used to fabricate emulsions co-entrapped with borage seed oil (BSO), resveratrol (RES) and curcumin (CUR), which were further spray dried to obtain powders. The fabricated microcapsules loaded with BSO, RES, and CUR displayed excellent dissolution performance, high encapsulation efficiency (≈93.05%) as well as semi-spherical shape, revealed via scanning electron microscopy (SEM). We also evaluated the impact of storage time (4 weeks) and temperature (40 °C) on the physicochemical characterization of OSA-MS coated microcapsules. Microcapsules coated with HCP exhibited greater oxidative stability, lower water activity and moisture contents rather than PUG coated microcapsules during storage because of its good film-forming properties. Addition of CUR enhanced the oxidative stability and retention of bioactive compounds. HCP microcapsules loaded with BSO + RES + CUR presented supreme retention of RES (70.32%), CUR 81.6% and γ-linolenic acid (≈ 96%). Our findings showed that CUR acted as an antioxidant agent; also, lower molecular weight OSA-MS as wall material could be used for the entrapment of bioactive compounds and promotion of innovative food products.


Assuntos
Antioxidantes/química , Curcumina/química , Portadores de Fármacos , Nanopartículas , Óleos de Plantas/química , Resveratrol/química , Amido/química , Ácido gama-Linolênico/química , Composição de Medicamentos , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Emulsões , Nanotecnologia , Oxirredução , Pós , Secagem por Atomização , Amido/análogos & derivados , Fatores de Tempo
4.
Adv Colloid Interface Sci ; 284: 102251, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32949812

RESUMO

Drug nanodelivery systems (DNDSs) are fascinated cargos to achieve outstanding therapeutic results of various drugs or natural bioactive compounds owing to their unique structures. The efficiency of several pharmaceutical drugs or natural bioactive ingredients is restricted because of their week bioavailability, poor bioaccessibility and pharmacokinetics after orally pathways. In order to handle such constraints, usage of native/natural polysaccharides (NPLS) in fabrication of DNDSs has gained more popularity in the arena of nanotechnology for controlled drug delivery to enhance safety, biocompatibility, better retention time, bioavailability, lower toxicity and enhanced permeability. The main commonly used NPLS in nanoencapsulation systems include chitosan, pectin, alginates, cellulose, starches, and gums recognized as potential materials for fabrication of cargos. Herein, this review is centered on different polysaccharide-based nanocarriers including nanoemulsions, nanohydrogels, nanoliposomes, nanoparticles and nanofibers, which have already served as encouraging candidates for entrapment of therapeutic drugs as well as for their sustained controlled release. Furthermore, the current article explicitly offers comprehensive details regarding application of NPLS-based nanocarriers encapsulating several drugs intended for the handling of numerous disorders, including diabetes, cancer, HIV, malaria, cardiovascular and respiratory as well as skin diseases.


Assuntos
Portadores de Fármacos/química , Nanomedicina/métodos , Nanoestruturas/química , Polissacarídeos/química , Animais , Liberação Controlada de Fármacos , Humanos
5.
Int J Biol Macromol ; 153: 697-707, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32112831

RESUMO

Borage seed oil (BSO) is one of the richest sources of γ-linolenic acid and linoleic acid, which are considered to retain plenty of health promoting benefits. However, its application in functional foods and dietary supplements remains limited owing to its superior vulnerability to oxidation. To solve this problem, ultrasound-assisted BSO-loaded nanoemulsions were prepared with modified starch incorporating different concentrations of peppermint oil (PO), as a natural antioxidant. The influence of different PO levels on the mean droplet size, rheology attributes, and oxidative stability of nanoemulsions stored at various temperatures (4, 25, and 40 °C) during 30 days storage was analyzed. In addition, DPPH and ABTS assays were used to determine the antioxidant activity and antioxidant capacity of BSO-loaded nanoemulsions, respectively. The optimized formulation (NE3; 5:5% v/v PO: BSO) exhibited a slight change in droplet size and oxidative stability at all temperatures during storage compared to other formulations. At a concentration of 328.08 µL/mL, formulation NE3 presented the minimum DPPH IC50 at 40 °C, which was lower than other formulations. The findings of this study revealed that the maximum retained antioxidant capacity (99.42 µg Trolox/mL) was related to NE3 comprising (5:5% v/v PO: BSO) stored at 40 °C for 30 days; which could be accredited to the role of PO as a natural antioxidant in order to improve the oxidative stability of nanoemulsion delivery system. Taken together, co-encapsulation of BSO and PO within nanoemulsions provides novel insights regarding the development of functional foods, dietary supplements and beverages.


Assuntos
Antioxidantes/química , Óleos de Plantas/química , Amido/química , Ácido gama-Linolênico/química , Emulsões , Mentha piperita
6.
Food Chem ; 233: 525-529, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28530608

RESUMO

Fried starchy food is rich in oil that may pose a risk to health. For controlling of the oil uptake, a rapid and accurate method for the determination of oil content in the fried starchy food is important. In this study, low-field nuclear magnetic resonance (LF-NMR) was applied to simultaneously determine water and oil contents in the model fried starchy system. The proton signals from oil and water were verified and distinguished by desiccation at 105°C. There was no superposition between oil and water signals in the fried starch, making it possible for quantitative analysis of water and oil in a single test. Compared with Soxhlet extraction, the LF-NMR analysis provided a more accurate result of oil content in the fried starchy system, confirming the practicability of the application of LF-NMR technology as a fast and accurate method for the quantification of water and oil in the fried starchy system.


Assuntos
Análise de Alimentos/métodos , Óleos/análise , Amido/análise , Água/análise , Culinária , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética
7.
Ultrason Sonochem ; 29: 39-47, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26584982

RESUMO

The aims of the current study were to evaluate the best technique for total phenolic extraction from Lavandula pubescens (Lp) and its application in vegetable oil industries as alternatives of synthetic food additives (TBHQ and BHT). To achieve these aims, three techniques of extraction were used: ultrasonic-microwave (40 kHz, 50 W, microwave power 480 W, 5 min), ultrasonic-homogenizer (20 kHz, 150 W, 5 min) and conventional maceration as a control. By using the Folin-Ciocalteu method, the total phenolic contents (TPC) (mg gallic acid equivalent/g dry matter) were found to be 253.87, 216.96 and 203.41 for ultrasonic-microwave extract, ultrasonic-homogenizer extract and maceration extract, respectively. The ultrasonic-microwave extract achieved the higher scavenger effect of DPPH (90.53%) with EC50 (19.54 µg/mL), and higher inhibition of ß-carotene/linoleate emulsion deterioration (94.44%) with IC50 (30.62 µg/mL). The activity of the ultrasonic-microwave treatment could prolong the induction period (18.82 h) and oxidative stability index (1.67) of fresh refined, bleached and deodorized palm olein oil (RBDPOo) according to Rancimat assay. There was an important synergist effect between citric acid and Lp extracts in improving the oxidative stability of fresh RBDPOo. The results of this work also showed that the ultrasonic-microwave assisted extract was the most effective against Gram-positive and Gram-negative strains that were assessed in this study. The uses of ultrasonic-microwave could induce the acoustic cavitation and rupture of plant cells, and this facilitates the flow of solvent into the plant cells and enhances the desorption from the matrix of solid samples, and thus would enhance the efficiency of extraction based on cavitation phenomenon.


Assuntos
Fracionamento Químico/métodos , Indústria Alimentícia , Lavandula/química , Fenóis/isolamento & purificação , Óleos de Plantas/química , Trioleína/química , Ondas Ultrassônicas , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Compostos de Bifenilo/química , Ácido Cítrico/farmacologia , Ácido Linoleico/química , Oxirredução/efeitos dos fármacos , Óleo de Palmeira , Fenóis/química , Fenóis/farmacologia , Picratos/química , beta Caroteno/química
8.
Carbohydr Polym ; 134: 333-6, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26428132

RESUMO

With the purpose of understanding the metabolic network of Aureobasidium pullulans, the central metabolic pathways were confirmed by the activities of the key enzymes involved in different pathways. The effect of different iodoacetic acid concentrations on pullulan fermentation was also investigated in this paper. The activities of phosphofructokinases and glucose-6-phosphate dehydrogenase existed in A. pullulans CGMCC1234, whereas 2-keto-3-deoxy-6-phosphogluconate aldolase activity was not detected. We proposed that the central metabolic pathways of A. pullulans CGMCC1234 included EMP and PPP, but no ED. Pullulan production declined fast as the iodoacetic acid increased, while cell growth offered upgrade firstly than descending latter tendency. Compared to the control group, the ratio of ATP/ADP of 0.60 mM iodoacetic acid group was lower at different stages of pullulan fermentation. The findings revealed that low concentration of iodoacetic acid might impel carbon flux flow toward the PPP, but reduce the flux of the EMP.


Assuntos
Ascomicetos/metabolismo , Glucanos/metabolismo , Trifosfato de Adenosina/metabolismo , Ascomicetos/enzimologia , Fermentação , Ácido Iodoacético/metabolismo , Redes e Vias Metabólicas
9.
Carbohydr Polym ; 101: 435-7, 2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24299794

RESUMO

Effect of uracil on the pullulan production, biomass and uridine phosphorylase (UPase) activity was studied in this research. Uracil was found to enhance pullulan accumulation and the addition time of uracil was crucial to pullulan production. Pullulan yield of 49.07 g/L was achieved by adding 5mM uracil at 48 h, by comparison to 37.72 g/L obtained with the control. UPase activity could not be detected at early growth stage of Aureobasidium pullulans, but stimulated by added uracil at logarithmic phase and stationary phase. The time course study on the fermentation of pullulan demonstrates that pullulan production was not closely associated with biomass accumulation. Results indicate that the increased pullulan yield brought by uracil was correlated with UPase activity.


Assuntos
Ascomicetos/efeitos dos fármacos , Ascomicetos/metabolismo , Glucanos/biossíntese , Uracila/farmacologia , Ascomicetos/enzimologia , Fermentação/efeitos dos fármacos , Cinética , Uridina Fosforilase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA