RESUMO
Echinococcosis and tuberculosis are two common zoonotic diseases that can cause severe pulmonary infections. Early screening and treatment monitoring are of great significance, especially in areas with limited medical resources. Herein, we designed an operation-friendly and rapid magnetic enrichment-silver acetylene chromogenic immunoassay (Me-Sacia) to monitor the antibody. The main components included secondary antibody-modified magnetic nanoparticles (MNP-Ab2) as capture nanoparticles, specific peptide (EG95 or CFP10)-modified silver nanoparticles (AgNP-PTs) as detection nanoparticles, and alkyne-modified gold nanoflowers as chromogenic nanoparticles. Based on the magnetic separation and plasma luminescence techniques, Me-Sacia could completely replace the colorimetric assay of biological enzymes. It reduced the detection time to approximately 1 h and simplified the labor-intensive and equipment-intensive processes associated with conventional ELISA. Meanwhile, the Me-Sacia showed universality for various blood samples and intuitive observation with the naked eye. Compared to conventional ELISA, Me-Sacia lowered the detection limit by approximately 96.8 %, increased the overall speed by approximately 15 times, and improved sensitivity by approximately 7.2 %, with a 100 % specificity and a coefficient of variation (CV) of less than 15 %.
Assuntos
Equinococose , Tuberculose Pulmonar , Humanos , Animais , Tuberculose Pulmonar/diagnóstico , Equinococose/diagnóstico , Imunoensaio/métodos , Prata/química , Ouro/química , Nanopartículas Metálicas/química , Zoonoses/diagnóstico , Limite de DetecçãoRESUMO
Glioblastoma (GBM) is the most common malignant tumor in the brain with temozolomide (TMZ) as the only approved chemotherapy agent. GBM is characterized by susceptibility to radiation and chemotherapy resistance and recurrence as well as low immunological response. There is an urgent need for new therapy to improve the outcome of GBM patients. We previously reported that 3-O-acetyl-11-keto-ß-boswellic acid (AKBA) inhibited the growth of GBM. In this study we characterized the anti-GBM effect of S670, a synthesized amide derivative of AKBA, and investigated the underlying mechanisms. We showed that S670 dose-dependently inhibited the proliferation of human GBM cell lines U87 and U251 with IC50 values of around 6 µM. Furthermore, we found that S670 (6 µM) markedly stimulated mitochondrial ROS generation and induced ferroptosis in the GBM cells. Moreover, S670 treatment induced ROS-mediated Nrf2 activation and TFEB nuclear translocation, promoting protective autophagosome and lysosome biogenesis in the GBM cells. On the other hand, S670 treatment significantly inhibited the expression of SXT17, thus impairing autophagosome-lysosome fusion and blocking autophagy flux, which exacerbated ROS accumulation and enhanced ferroptosis in the GBM cells. Administration of S670 (50 mg·kg-1·d-1, i.g.) for 12 days in a U87 mouse xenograft model significantly inhibited tumor growth with reduced Ki67 expression and increased LC3 and LAMP2 expression in the tumor tissues. Taken together, S670 induces ferroptosis by generating ROS and inhibiting STX17-mediated fusion of autophagosome and lysosome in GBM cells. S670 could serve as a drug candidate for the treatment of GBM.
Assuntos
Neoplasias Encefálicas , Ferroptose , Glioblastoma , Humanos , Animais , Camundongos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Autofagossomos/metabolismo , Amidas/farmacologia , Transdução de Sinais , Lisossomos/metabolismo , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Proteínas Qa-SNARERESUMO
Smart nanoparticles, which can respond to biological cues or be guided by them, are emerging as a promising drug delivery platform for precise cancer treatment. The field of oncology, nanotechnology, and biomedicine has witnessed rapid progress, leading to innovative developments in smart nanoparticles for safer and more effective cancer therapy. In this review, we will highlight recent advancements in smart nanoparticles, including polymeric nanoparticles, dendrimers, micelles, liposomes, protein nanoparticles, cell membrane nanoparticles, mesoporous silica nanoparticles, gold nanoparticles, iron oxide nanoparticles, quantum dots, carbon nanotubes, black phosphorus, MOF nanoparticles, and others. We will focus on their classification, structures, synthesis, and intelligent features. These smart nanoparticles possess the ability to respond to various external and internal stimuli, such as enzymes, pH, temperature, optics, and magnetism, making them intelligent systems. Additionally, this review will explore the latest studies on tumor targeting by functionalizing the surfaces of smart nanoparticles with tumor-specific ligands like antibodies, peptides, transferrin, and folic acid. We will also summarize different types of drug delivery options, including small molecules, peptides, proteins, nucleic acids, and even living cells, for their potential use in cancer therapy. While the potential of smart nanoparticles is promising, we will also acknowledge the challenges and clinical prospects associated with their use. Finally, we will propose a blueprint that involves the use of artificial intelligence-powered nanoparticles in cancer treatment applications. By harnessing the potential of smart nanoparticles, this review aims to usher in a new era of precise and personalized cancer therapy, providing patients with individualized treatment options.
Assuntos
Nanopartículas Metálicas , Nanotubos de Carbono , Neoplasias , Humanos , Ouro/uso terapêutico , Inteligência Artificial , Neoplasias/tratamento farmacológico , Neoplasias/patologia , PeptídeosRESUMO
Metabolic dysfunction-associated steatotic liver disease (MASLD) is considered a "multisystem" disease that simultaneously suffers from metabolic diseases and hepatic steatosis. Some may develop into liver fibrosis, cirrhosis, and even hepatocellular carcinoma. Given the close connection between metabolic diseases and fatty liver, it is urgent to identify drugs that can control metabolic diseases and fatty liver as a whole and delay disease progression. Ferroptosis, characterized by iron overload and lipid peroxidation resulting from abnormal iron metabolism, is a programmed cell death mechanism. It is an important pathogenic mechanism in metabolic diseases or fatty liver, and may become a key direction for improving MASLD. In this article, we have summarized the physiological and pathological mechanisms of iron metabolism and ferroptosis, as well as the connections established between metabolic diseases and fatty liver through ferroptosis. We have also summarized MASLD therapeutic drugs and potential active substances targeting ferroptosis, in order to provide readers with new insights. At the same time, in future clinical trials involving subjects with MASLD (especially with the intervention of the therapeutic drugs), the detection of serum iron metabolism levels and ferroptosis markers in patients should be increased to further explore the efficacy of potential drugs on ferroptosis.
RESUMO
Multiple myeloma (MM) is a common hematological malignancy. Although recent clinical applications of immunomodulatory drugs, proteasome inhibitors and CD38-targeting antibodies have significantly improved the outcome of MM patient with increased survival, the incidence of drug resistance and severe treatment-related complications is gradually on the rise. This review article summarizes the characteristics and clinical investigations of several MM drugs in clinical trials, including their structures, mechanisms of action, structure-activity relationships, and clinical study progress. Furthermore, the application potentials of the drugs that have not yet entered clinical trials are also reviewed. The review also outlines the future directions of MM drug development.
Assuntos
Neoplasias Hematológicas , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Neoplasias Hematológicas/tratamento farmacológico , Agentes de ImunomodulaçãoRESUMO
Since the first Immune Checkpoint Inhibitor was developed, tumor immunotherapy has entered a new era, and the response rate and survival rate of many cancers have also been improved. Despite the success of immune checkpoint inhibitors, resistance limits the number of patients who can achieve a lasting response, and immune-related adverse events complicate treatment. The mechanism of immune-related adverse events (irAEs) is unclear. We summarize and discuss the mechanisms of action of immune checkpoint inhibitors, the different types of immune-related adverse events and their possible mechanisms, and describe possible strategies and targets for prevention and therapeutic interventions to mitigate them.
Assuntos
Inibidores de Checkpoint Imunológico , Imunoterapia , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Imunoterapia/efeitos adversosRESUMO
BACKGROUND: Gastric cancer (GC) is a life-threatening malignant tumor with high incidence rate. Despite great progress, there are still many GC sufferers that cannot benefit from the existing anti-GC treatments. Therefore, it is still necessary to develop novel medicines against GC. Emetine, a natural small molecule isolated from Psychotria ipecacuanha, has been broadly used for medicinal purposes including cancer treatment. Here, we conducted a comprehensive study on the anti-GC effects of emetine and the related mechanisms of action. METHODS: The cell viability was evaluated by MTT and colony formation assay. Cellular proliferation and apoptosis were analyzed by edu incorporation assay and Annexin V-PI staining, respectively. Moreover, wound healing assay and transwell invasion assay were conducted to detect cell migration and invasion after treatment with emetine. To elucidate the molecular mechanism involved in the anti-GC effects of emetine, RNA sequencing and functional enrichment analysis were carried out on MGC803 cells. Then, the western blot analysis was performed to further verify the anti-GC mechanism of emetine. In vivo anti-tumor efficacy of emetine was evaluated in the MGC803 xenograft model. RESULTS: MTT and colony formation assay exhibited a strong potency of emetine against GC cell growth, with IC50 values of 0.0497 µM and 0.0244 µM on MGC803 and HGC-27 cells, respectively. Further pharmacodynamic studies revealed that emetine restrained the growth of GC cells mainly via proliferation inhibition and apoptosis induction. Meanwhile, emetine also had the ability to block GC cell migration and invasion. The results of RNA sequencing and western blot showed that emetine acted through regulating multiple signaling pathways, including not only MAPKs and Wnt/ß-catenin signaling axes, but also PI3K/AKT and Hippo/YAP signaling cascades that were not found in other tumor types. Notably, the antitumor efficacy of emetine could also be observed in MGC803 xenograft models. CONCLUSION: Our data demonstrate that emetine is a promising lead compound and even a potential drug candidate for GC treatment, deserving further structural optimization and development.
Assuntos
Emetina , Neoplasias Gástricas , Humanos , Emetina/farmacologia , Emetina/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Gástricas/metabolismo , Proliferação de Células , Via de Sinalização Wnt , Linhagem Celular Tumoral , Movimento Celular , ApoptoseRESUMO
Objective: The aim was to systematically compare the drug compatibility with various closed intravenous (i.v.) infusion containers, to provide a reference for selecting a relatively superior infusion container and improve the medication safety for patients in clinical practice. Methods: The compatibility of four commonly used clinical injections (ceftazidime, pantoprazole sodium, ambroxol hydrochloride, edaravone) with three representative closed i. v. infusion containers (non-PVC infusion bags, upright polypropylene infusion bags, inner sealed polypropylene infusion bags) prefilled with infusion fluids (0.9% sodium chloride or 5% dextrose) in the Chinese market were investigated in this study. The particle counts of both infusion fluids and diluted chemical injections by infusion fluids in various infusion containers were determined by the light obscuration method. At 0, 2 and 6 h after four injections following dilution with infusion fluids in each container, the pH of the solutions was detected, and the physical properties were examined by visual inspection. Meanwhile, the drug concentrations were assessed by high performance liquid chromatography (HPLC). Results: As for either infusion fluids or diluted injections by infusion fluids, the particle counts in non-PVC infusion bags were significantly greater than those in the other two bags under some circumstances. The particle counts in diluted injections by infusion fluids increased dramatically compared with those in infusion fluids in all infusion containers, especially for the small-size particles. But pH, physical properties and drug concentrations of diluted infusion solutions in all infusion containers remained nearly unchanged over the test period. Conclusion: Closed i. v. infusion containers included in this study are all well-compatible with four injections. Moreover, the closed infusion containers produced by Chinese manufacturers have met the international quality standard. Particularly, the intravenous admixture preparation process needs to be optimized to reduce the overall particulate contaminants.
RESUMO
Epigenetic alterations are implicated in tumour immune evasion and immune checkpoint blockade (ICB) resistance. SET domain bifurcated histone methyltransferase 1 (SETDB1) is a histone lysine methyltransferase that catalyses histone H3K9 di- and tri-methylation on euchromatin, and growing evidence indicates that SETDB1 amplification and abnormal activation are significantly correlated with the unfavourable prognosis of multiple malignant tumours and contribute to tumourigenesis and progression, immune evasion and ICB resistance. The main underlying mechanism is H3K9me3 deposition by SETDB1 on tumour-suppressive genes, retrotransposons, and immune genes. SETDB1 targeting is a promising approach to cancer therapy, particularly immunotherapy, because of its regulatory effects on endogenous retroviruses. However, SETDB1-targeted therapy remains challenging due to potential side effects and the lack of antagonists with high selectivity and potency. Here, we review the role of SETDB1 in tumourigenesis and immune regulation and present the current challenges and future perspectives of SETDB1 targeted therapy.
RESUMO
Ferroptosis has been implicated in tumor progression and immunoregulation. Identification of ferroptosis-related prognostic gene is important for immunotherapy and prognosis in ovarian cancer (OV). We assessed the potential predictive power of a novel ferroptosis-related gene (FRG) signature for prognosis and immunotherapy in Asian and Caucasian OV populations. We collected gene expression profiles and clinicopathological data from public databases. The least absolute shrinkage and selection operator Cox regression algorithm was used to construct the FRG signature. Receiver operating characteristic (ROC) curve, Kaplan-Meier method, Cox regression model were used to evaluate the clinical benefits of FRG signature. Gene functional and gene set enrichment analyses were used for functional annotation and immune landscape analysis. A 15-FRG signature was constructed and used to stratify patients into two risk groups. Patients in the high-risk group had significantly worse survival. The risk score was a significant independent risk factor for OS. The area under the ROC curve indicated the good prediction performance of the FRG signature. Notably, the low-risk group showed a significant enrichment in immune-related pathways and a "hot" immune status. The risk score was found to be an efficient and robust predictor of response to immunotherapy. In conclusion, our study identified a novel 15-FRG prognostic signature that can be used for prognostic prediction and precision immunotherapy in Asian and Caucasian OV populations.
RESUMO
In recent years, the development of dual target drugs has become a research hotspot in cancer treatment and the reasonable design of the drugs is critical. The nonclearable linked pharmacophore mode is one of the commonly used strategies for designing dual target drugs, it can connect the pharmacophores of two synergistic target inhibitors into one molecule through the linker, which greatly improves the utilization of drugs. Epigenetic modifications as a potential treatment for multiple diseases have always been a subject of great concern, and Histone deacetylases (HDAC) plays an important role. Janus Kinase (JAK) is a family of intracellular non-receptor tyrosine kinases that transduce cytokine-mediated signals through the JAK-signal transducers and the activators of transcription (STAT) pathway. Studies showed the combination of HDAC and JAK inhibitors exhibited synergistic effects in breast cancer treatment [1]. In addition, the pharmacophore models of the aforementioned two inhibitors indicate similar essential features. Further investigation on recent years' progress in the field demonstrated the nonclearable linked pharmacophore mode, using different length carbon chains as linkers to connect the pharmacophores of the two inhibitors, is the main strategy to design HDAC/JAK dual-target inhibitors which has been verified to be effective in biological activity tests. This review takes recent years' HDAC/JAK dual target inhibitors' development details as an example to summarize the general ideas behind the scene. We wish to provide the readers a theoretical basis for the development of more efficient dual-target or multi-target drugs in future.
Assuntos
Inibidores de Janus Quinases , Neoplasias , Histona Desacetilases/metabolismo , Inibidores de Janus Quinases/farmacologia , Inibidores de Janus Quinases/uso terapêutico , Pirimidinas/farmacologia , Janus Quinases/metabolismo , Janus Quinases/farmacologia , Transdução de Sinais , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismoRESUMO
Numerous cutting-edge studies have confirmed that the slow accumulation of cell cycle arrested and secretory cells, called senescent cells (SCs), in tissues is an important negative factor, or even the culprit, in age- associated diseases such as non-alcoholic fatty liver, Alzheimer's disease, type 2 diabetes, atherosclerosis, and malignant tumors. With further understanding of cellular senescence, SCs are important effective targets for the treatment of senescence-related diseases, called the Senotherapy. However, existing therapies, including Senolytics (which lyse SCs) and Senostatic (which regulate senescence-associated secretory phenotype), do not have the properties to target SCs, and side effects due to non-specific distribution are one of the hindrances to clinical use of Senotherapy. In the past few decades, targeted delivery has attracted much attention and been developed as a recognized diagnostic and therapeutic novel tool, due to the advantages of visualization of targets, more accurate drug/gene delivery, and ultimately "reduced toxicity and enhanced efficacy". Despite considerable advances in achieving targeted delivery, it has not yet been widely used in Senotherapy. In this review, we clarify the challenge for Senotherapy, then discuss how different targeted strategies contribute to imaging or therapy for SCs in terms of different biomarkers of SCs. Finally, the emerging nano-Senotherapy is prospected.
Assuntos
Diabetes Mellitus Tipo 2 , Neoplasias , Humanos , Senoterapia , Senescência Celular , Neoplasias/patologiaRESUMO
Indoleamine 2.3-dioxygenases (IDO1/2) and tryptophan 2.3-dioxygenase (TDO) are the initial and rate-limiting enzymes in tryptophan metabolism, which play an essential role in mediating immunosuppression in tumor microenvironment. Accumulating evidence has indicated that both IDO1 and TDO are highly expressed in many malignant tumors, and their expression is generally associated with reduced tumor-infiltrating immune cells, increased regulatory T-cell infiltration, as well as cancer progression and poor prognosis for malignancies. A large number of IDO1 and TDO inhibitors have been screened or synthesized in the last two decades. Thus far, at least 12 antagonists targeting IDO1 and TDO have advanced to clinical trials. In this account, we conducted a comprehensive review of the development of IDO1 and TDO inhibitors in cancer immunotherapy, particularly their clinical research progress, and presented the current challenges and corresponding solutions.
Assuntos
Neoplasias , Triptofano , Humanos , Imunoterapia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Neoplasias/tratamento farmacológico , Triptofano Oxigenase/metabolismo , Microambiente TumoralRESUMO
B-cell lymphoma is one of the most common types of lymphoma, and chemotherapy is still the current first-line treatment. However, due to the systemic side effects caused by chemotherapy drugs, traditional regimens have limitations and are difficult to achieve ideal efficacy. Recent studies have found that CD22 (also known as Siglec-2), as a specific marker of B-cells, is significantly up-regulated on B-cell lymphomas. Inspired by the specific recognition and binding of sialic acid residues by CD22, a polysialic acid (PSA)-modified PLGA nanocarrier (SAPC NP) designed to target B-cell lymphoma was fabricated. Mitoxantrone (MTO) was further loaded into SAPC NP through hydrophobic interactions to obtain polysialylated immunogenic cell death (ICD) nanoinducer (MTO@SAPC NP). Cellular experiments confirmed that MTO@SAPC NP could be specifically taken up by two types of CD22+ B lymphoma cells including Raji and Ramos cells, unlike the poor endocytic performance in other lymphocytes or macrophages. MTO@SAPC NP was determined to enhance the ICD and show better apoptotic effect on CD22+ cells. In the mouse model of B-cell lymphoma, MTO@SAPC NP significantly reduced the systemic side effects of MTO through lymphoma targeting, then achieved enhanced anti-tumor immune response, better tumor suppressive effect, and improved survival rate. Therefore, the polysialylated ICD nanoinducer provides a new strategy for precise therapy of B-cell lymphoma. STATEMENT OF SIGNIFICANCE: ⢠Polysialic acid functionalized nanocarrier (SAPC NP) was designed and prepared. ⢠SAPC NP is specifically endocytosed by two CD22+ B lymphoma cells. ⢠Mitoxantrone-loaded nanoinducer (MTO@SAPC NP) promote immunogenic cell death and anti-tumor immune response. ⢠"Polysialylation" is a potential new approach for precision treatment of B-cell lymphoma.
Assuntos
Linfoma de Células B , Linfoma , Animais , Apoptose , Imunidade , Linfoma de Células B/tratamento farmacológico , Camundongos , Mitoxantrona/farmacologia , Mitoxantrona/uso terapêuticoRESUMO
Licochalcone A (LA), a useful and valuable flavonoid, is isolated from Glycyrrhiza uralensis Fisch. ex DC. and widely used clinically in traditional Chinese medicine. We systematically updated the latest information on the pharmacology of LA over the past decade from several authoritative internet databases, including Web of Science, Elsevier, Europe PMC, Wiley Online Library, and PubMed. A combination of keywords containing "Licochalcone A," "Flavonoid," and "Pharmacological Therapy" was used to help ensure a comprehensive review. Collected information demonstrates a wide range of pharmacological properties for LA, including anticancer, anti-inflammatory, antioxidant, antibacterial, anti-parasitic, bone protection, blood glucose and lipid regulation, neuroprotection, and skin protection. LA activity is mediated through several signaling pathways, such as PI3K/Akt/mTOR, P53, NF-κB, and P38. Caspase-3 apoptosis, MAPK inflammatory, and Nrf2 oxidative stress signaling pathways are also involved with multiple therapeutic targets, such as TNF-α, VEGF, Fas, FasL, PI3K, AKT, and caspases. Recent studies mainly focus on the anticancer properties of LA, which suggests that the pharmacology of other aspects of LA will need additional study. At the end of this review, current challenges and future research directions on LA are discussed. This review is divided into three parts based on the pharmacological effects of LA for the convenience of readers. We anticipate that this review will inspire further research.
RESUMO
Focal adhesion kinase (FAK, also known as PTK2) is a tyrosine kinase that regulates integrin and growth factor signaling pathways and is involved in the migration, proliferation and survival of cancer cells. FAK is a promising target for cancer treatment. Many small molecule FAK inhibitors have been identified and proven in both preclinical and clinical studies to be effective inhibitors of tumor growth and metastasis. There are many signaling pathways, such as those involving FAK, Src, AKT, MAPK, PI3K, and EGFR/HER-2, that provide survival signals in cancer cells. Dual inhibitors that simultaneously block FAK and another factor can significantly improve efficacy and overcome some of the shortcomings of single-target inhibitors, including drug resistance. In this review, the antitumor mechanisms and research status of dual inhibitors of FAK and other targets, such as Pyk2, IGF-IR, ALK, VEGFR-3, JAK2, EGFR, S6K1, and HDAC2, are summarized, providing new ideas for the development of effective FAK dual-target preparations.
Assuntos
Proteína-Tirosina Quinases de Adesão Focal , Neoplasias , Transdução de Sinais , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêuticoRESUMO
Due to its complexity, diversity and heterogeneity, melanoma is a kind of malignant tumor. It has been proved that the enhancement of anti-tumor immune response such as immunogenic cell death (ICD) is an important therapeutic strategy. In previous studies, we confirmed that dermatan sulfate (DS) from skin tissue could specifically homing to melanoma B16F10 cells. In this study, we propose a nanoinducer (DOX/ADS NP) based on a functional DS for melanoma. This nanosystem is composed of DS as framework, aromatic thioketal derivative (ATK) as functional grafting unit and doxorubicin (DOX) designed as an ICD inducer. Through the intermolecular interaction between DOX and ATK, DOX/ADS NP with specific-homing, high-loading and ROS-triggering release was obtained via self-assemble. Compared with free DOX and non-functionalized nanomedicine, DOX/ADS NP could release DOX into B16F10 cells better, and strongly induce the translocation of calreticulin (CRT) to the cell membrane. CRT is a marker of ICD, also as a "eat me" signal to stimulate the maturation and antigen presentation of dendritic cells. Therefore, a series of subsequent immune responses were activated: maturation of dendritic cells, T cells proliferation, increased tumor-infiltrating CTLs and the ratio of CTLs to Tregs, and up-regulated cytotoxic cytokine expression. In conclusion, DOX/ADS NP promoted ICD-associated immune response through more specific targeting effect and sensitive responsive DOX release, achieving better inhibitory effect on melanoma than free DOX and other nanoformulation. This biomimetic ICD nanoinducer based on DS is expected to provide new strategies and references for the treatment of melanoma.
Assuntos
Antineoplásicos , Melanoma , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Dermatan Sulfato/uso terapêutico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Humanos , Morte Celular Imunogênica , Melanoma/tratamento farmacológico , Melanoma/patologia , Espécies Reativas de OxigênioRESUMO
Objectives: It has been reported that keratinocyte differentiation factor 1 (KDF1) was related to proliferation, differentiation, and cell cycle. However, the role of KDF1 has not been reported in ovarian cancer. The present study investigated the function and the potential mechanism of KDF1 in ovarian cancer. Methods: We evaluated the prognostic value in ovarian cancer based on data from the Cancer Genome Atlas (TCGA) database. The Kruskal-Wallis test, Wilcoxon signed-rank test, and logistic regression were used to evaluate the relationship between KDF1 expression and clinicopathologic features. The Cox regression and the Kaplan-Meier method were adopted to evaluate prognosis-related factors. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) gene enrichment analysis, and Gene Set Enrichment Analysis (GSEA) were performed to identify the key biological process related to KDF1. Then the expression of KDF1 in ovarian cancer tissues was validated by streptavidin-peroxidase (SP) immunohistochemistry. The proliferation and invasion ability of KDF1 were determined by EdU and Transwell assay, respectively, with KDF1 gene silencing and overexpression. The mRNA expression of KDF1 was determined by qPCR. The protein expression of KDF1 was determined using the Western blot. Methods: By performing differential expression analysis on the ovarian cancer data of the TCGA database, it was found that KDF1 is highly expressed in ovarian cancer patients and associated with poorer overall survival (OS) and progression-free survival (PFS) of ovarian cancer patients. The highly expressed KDF1 may reduce cell adhesion according to GO, KEGG, and GSEA results. After analysis combining the relevant clinical features, we found that the high expression of KDF1 is an independent prognostic factor of ovarian cancer and associated with platinum resistance and tumor metastasis in ovarian cancer. At the same time, the BioGRID database showed that there might be protein-protein interaction between KDF1 and E-cadherin. Then we further validated that the high expression of KDF1 had a close correlation with the stage and grade of ovarian cancer in ovarian cancer tissue chips. Silencing KDF1 inhibited the proliferation and invasion ability of SKOV3 cells. By contrast, ectopic expression of KDF1 promoted the proliferation and invasion ability of A2780 cells. We also found that KDF1 can interact with E-cadherin and regulate the expression of Wnt5A and ß-catenin, hence activating Wnt/ß-catenin pathway via in vitro and vivo experiments. Conclusions: Based on the bioinformatics analysis, in vitro experiments, and an in vivo study, it is indicated that KDF1 played an important role in ovarian cancer progression and might be a therapeutic target for patients with ovarian cancer.
RESUMO
Neural precursor cell expressed developmentally downregulated protein-8 (NEDD8) is a ubiquitin-like protein, which activates an important post-translational modification process: neddylation, thereby regulating the stability and degradation of various proteins related to multiple physiological processes. And the abnormal activation of NEDD8 (overexpression or underexpression) is related to the occurrence of multiple cancers including gastric carcinoma. NEDD8 activating enzyme (NAE), a key enzyme for the activation of NEDD8, controls the initiation of the NEDD8 transfer cascade, which is an important target for anti-tumor drugs. With the disclosure of the anti-tumor mechanism, NAE modulators (inhibitors and agonists) have gradually become a research hotspot in the development of anti-tumor drugs. And the application of NAE modulators has also been further expanded, not only limited to certain hematological tumors, its therapeutic potential in multiple solid tumors, especially gastric carcinoma, has been gradually uncovered. This paper mainly explains the structural characteristics, catalytic sites, and mechanism of NAE. And the relationships between neddylation and tumors are also elaborated from the perspective of NAE regulating the downstream pathways. In addition, the NAE modulators reported in recent years were reviewed, mainly focusing on their discovery processes, structure-activity relationships, inhibitory efficacy, pharmacological mechanism, and clinical research. And we reasonably predict the application of NAE modulators in gastric carcinoma, according to its relationship with neddylation. We summarize the issues in NAE modulator development and discuss the possible development directions.
Assuntos
Antineoplásicos , Carcinoma , Neoplasias Gástricas , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma/tratamento farmacológico , Ciclopentanos/química , Humanos , Neoplasias Gástricas/tratamento farmacológico , Relação Estrutura-Atividade , Ubiquitinas/metabolismoRESUMO
Aromatized thioketal (ATK) linked the immunoregulatory molecule (budesonide, Bud) and the cytotoxic molecule (gemcitabine, Gem) to construct a ROS-activated Janus-prodrug, termed as BAG. Benefiting from the hydrogen bonding, π-π stacking, and other intermolecular interactions, BAG could self-assemble into nanoaggregates (BAG NA) with a well-defined spherical shape and uniform size distribution. Compared to the carrier-based drug delivery system, BAG NA have ultrahigh drug loading content and ROS concentration-dependent drug release. Colitis-associated colorectal cancer (CAC) is a typical disease in which chronic inflammation transforms into tumors. BAG NA can be internalized by colon cancer C26 cells and then triggered by excessive intracellular ROS to release nearly 100% of the drugs. Based on this, BAG NA showed a stronger pro-apoptotic effect than free Bud combined with free Gem. What is gratifying is that orally administered BAG NA can precisely accumulate in the diseased colon tissues of CAC mice induced by AOM/DSS and simultaneously release Bud and Gem. Bud can regulate the tumor immune microenvironment to restore and enhance the cytotoxicity of Gem. Therefore, BAG NA maximizes the synergistic therapeutic effect through co-delivery of Bud and Gem. This work provided a cutting-edge method for constructing self-delivery Janus-prodrug based on ATK and confirmed its potential application in inflammation-related carcinogenesis.