Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 278: 114225, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34038799

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tribulus terrestris L., as an annual herb plant from Zygophyllaceae, exhibits many biological activities, and its main chemical constituents are saponins. However, the extraction process, chemical compositions, anti-inflammatory effect and mechanism of total saponins from Tribulus terrestris L. leaves are still unclear. AIM OF THE STUDY: The present study extensively evaluated the extraction process, major components, anti-inflammatory action and mechanism of Tribulus terrestris L. leaves saponins. MATERIALS AND METHODS: The ultrasonic extraction and response surface methods were adopted for optimization of extraction technology of total saponins from Tribulus terrestris L. leaves, and its compositions were detected with LC-MSn method. The anti-inflammatory activity of total saponins was studied by lipopolysaccharide induced RAW 264.7 cells and acute lung injury mice models. RESULTS: The ultrasonic extraction parameters of saponins fraction, including ethanol concentration 30%, extraction time 55 min, ratio of solvent to material 35:1 ml/g and extraction temperature 46 °C, were screened by response surface method with the extracting rate 5.49%, and thirty compositions were detected with LC-MSn method. Moreover, saponins fraction can play a stronger anti-inflammatory effect by reducing the phagocytic activity and pulmonary edema, and protection of morphology of RAW 264.7 cells and lung tissues, and decreasing the content of NO and TNF-α. Moreover, it was revealed that total saponins extract can exert the anti-inflammatory action by the inhibition of the activation of the TLR4-TRAF6-NF-κB signalling pathway. CONCLUSION: These studies imply that Tribulus terrestris L. leaves saponins may be an important anti-inflammatory drug in clinic.


Assuntos
Anti-Inflamatórios/farmacologia , Extratos Vegetais/farmacologia , Saponinas/farmacologia , Lesão Pulmonar Aguda/tratamento farmacológico , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Lipopolissacarídeos , Masculino , Camundongos , Extratos Vegetais/análise , Extratos Vegetais/química , Folhas de Planta , Células RAW 264.7 , Saponinas/química , Saponinas/isolamento & purificação , Espectrometria de Massas por Ionização por Electrospray , Tribulus/química , Ultrassom
2.
J Agric Food Chem ; 68(31): 8223-8231, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32650643

RESUMO

Mulberry leaf is a common vegetable with a variety of beneficial effects, such as hypoglycemic activity. However, the underlying mechanism of its hypoglycemic effect have not been fully revealed. In this study, two flavonoid derivatives were isolated from mulberry leaves, a new geranylated flavonoid compound (1) and its structural analogue (2). The structures of compounds 1 and 2 were elucidated using spectroscopic analysis. To study the potential hypoglycemic properties of these compounds, their regulatory effects on protein tyrosine phosphatase 1B (PTP1B) were investigated. In comparison to oleanolic acid, compounds 1 and 2 showed significant inhibitory activities (IC50 = 4.53 ± 0.31 and 10.53 ± 1.76 µM) against PTP1B, the positive control (IC50 = 7.94 ± 0.76 µM). Molecular docking predicted the binding sites of compound 1 to PTP1B. In insulin-resistance HepG2 cell, compound 1 promoted glucose consumption in a dose-dependent manner. Furthermore, western blot and polymerase chain reaction analyses indicated that compound 1 might regulate glucose consumption through the PTP1B/IRS/PI3K/AKT pathway. In conclusion, geranylated flavonoids in mulberry leaves inhibite PTP1B and increase the glucose consumption in insulin-resistant cells. These findings provide an important basis for the use of mulberry leaf flavonoids as a dietary supplement to regulate glucose metabolism.


Assuntos
Flavonoides/química , Resistência à Insulina , Morus/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Inibidores de Proteínas Quinases/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Flavonoides/farmacologia , Glucose/metabolismo , Células Hep G2 , Humanos , Insulina/metabolismo , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Folhas de Planta/química , Inibidores de Proteínas Quinases/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA