Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 10(3)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38535236

RESUMO

Nucleotide substitutions have played an important role in molecular evolution, and understanding their dynamics would contribute to genetic studies. Related research with defined DNA sequences lasted for decades until whole-genome sequencing arose. UV radiation (UVR) can generate base changes and other genetic variations in a short period of time, so it would be more meaningful to explore mutations caused by UVR from a genomic perspective. The monokaryon enoki strain WT583 was selected as the experimental material in this study because it can spontaneously produce large amounts of oidia on PDA plates, and the monokaryons originating from oidia have the same genotype as their mother monokaryon. After exposure to UV radiation, 100 randomly selected mutants, with WT583 as the reference genome, were sent for genome sequencing. BWA, samtools, and GATK software were employed for SNP calling, and the R package CMplot was used to visualize the distribution of the SNPs on the contigs of the reference genome. Furthermore, a k-mer-based method was used to detect DNA fragment deletion. Moreover, the non-synonymous genes were functionally annotated. A total of 3707 single-base substitutions and 228 tandem mutations were analyzed. The immediate adjacent bases showed different effects on the mutation frequencies of adenine and cytosine. For adenine, the overall effects of the immediate 5'-side and 3'-side bases were T > A > C > G and A > T > G > C, respectively; for cytosine, the overall effects of the immediate 5'-side and 3'-side bases were T > C > A > G and C > T > A > G, respectively. Regarding tandem mutations, the mutation frequencies of double-transition, double-transversion, 3'-side transition, and 5'-side transition were 131, 8, 72, and 17, respectively. Transitions at the 3'-side with a high mutation frequency shared a common feature, where they held transversions at the 5'-side of A→T or T→A without covalent bond changes, suggesting that the sequence context of tandem motifs might be related to their mutation frequency. In total, 3707 mutation sites were non-randomly distributed on the contigs of the reference genome. In addition, pyrimidines at the 3'-side of adenine promoted its transversion frequency, and UVR generated DNA fragment deletions over 200 bp with a low frequency in the enoki genome. The functional annotation of the genes with non-synonymous mutation indicated that UVR could produce abundant mutations in a short period of time.

2.
Plant Dis ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38190362

RESUMO

Sparassis crispa, also known as cauliflower mushroom, is a new popularly edible mushroom in China, also a medicinal mushroom, which possesses various biological activities, such as immunopotentiation, anti-diabetes, anti-cancer, and anti-inflammatory effects. (Han et al., 2018). In recent years, the artificial cultivation of S. crispa has gained considerable public attention in China. In 2023, approximately 20% of S. crispa (about 0.05 ha of the planting area) showed obvious rot with white molds symptoms in mushroom hothouse, located in Shuangliu county, Sichuan province, China (GPS, 104°7'51"N, 30°25'2"E). Infected fruiting bodies were covered by white mycelia that later turned red or fuchsia. In the final stages of infection, the S. crispa fruiting bodies turned dark red or brown before rotting. The pathogen was isolated from the margin of the lesions by plating onto potato dextrose agar (PDA), and incubated at 25℃ in the dark for a week. Five pure culture fungal isolates were obtained. Collected isolates with similar morphology were described as Lecanicillium spp. (Zare et al., 2001). The colonies were raised, covered with white, the reverse side were violet brown, produced diffusing reddish-purple pigment. Conidiogenous cells produced singly, in pairs, verticillate or in dense irregular clusters on prostrate hyphae, at first flask-shaped, tapering into threadlike neck, with a size of 3.0-6.2×0.8-2.2 µm. Conidia were solitary, oval to subglobose, and 2.3-4.0×1.1-2.1 µm in size, similar to L. aphanocladii (Higo et al., 2021). For pathogenicity testing, ten fruiting bodies of S. crispa (planted in the bottles) were selected. Fungal cake of the isolate Bx-Ljb of L. aphanocladii were applied to the fruiting body of S. crispa, whereas pieces of sterile PDA medium were used as controls. All the bottles were incubated at 19±1℃, 85-100% relative humidity, and 18 h of light in the mushroom hothouse. A week later, the inoculated fruiting bodies developed brown spots and gradually expanding, with symptoms similar to the original diseased fruiting bodies. The controls remained healthy. The same fungus was reisolated from the infected fruiting bodies and subsequently identified by morphological characteristics and DNA sequence analysis. The pathogenicity test was repeated three times with similar results. For molecular identification, the DNA of the isolates was extracted using a Fungi Genomic DNA Extraction kit (Solarbio, Beijing). The SSU, LSU, and TEF1-α genes were amplified with the primer as previously described (Zhou et al., 2018). The generated sequences were deposited in GenBank with accession numbers OR206377, OR206378, and OR204702, respectively. BLASTn analyses showed >99.2% identity with previously deposited sequences of L. aphanocladii. Based on the maximum likelihood method, phylogenetic analysis revealed 99% bootstrap support values with L. aphanocladii. The fungus was identified as L. aphanocladii based on morphological and multilocus phylogenetic analyses. To our knowledge, there are two reports of L. aphanocladii on fruiting bodies of Tremella fuciformis and Morchella sextelata in China, and this is the first report of this fungus causing rot of S. crispa in China. It may be a reminder that the risk of L. aphanocladii in mushroom production in China is gradually increasing. These results will contribute to developing managemental strategies for this disease in S. crispa.

3.
Braz J Microbiol ; 51(1): 87-94, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31667800

RESUMO

NADPH oxidases are enzymes that have been reported to generate reactive oxygen species (ROS) in animals, plants and many multicellular fungi in response to environmental stresses. Six genes of the NADPH oxidase complex components, including vvnoxa, vvnoxb, vvnoxr, vvbema, vvrac1 and vvcdc24, were identified based on the complete genomic sequence of the edible fungus Volvariella volvacea. The number of vvnoxa, vvrac1, vvbema and vvcdc24 transcripts fluctuated with ageing, and the gene expression patterns of vvnoxa, vvrac1 and vvbema were significantly positively correlated. However, the expression of vvnoxb and vvnoxr showed no significant difference during ageing. In hyphae subjected to mechanical injury stress, both O2- and H2O2 concentrations were increased. The expression of vvnoxa, vvrac1, vvbema and vvcdc24 was substantially upregulated, but vvnoxb and vvnoxr showed no response to mechanical injury stress at the transcriptional level. Additionally, the transcription of vvnoxa, vvrac1, vvbema and vvcdc24 could be repressed when the intracellular ROS were eliminated by diphenyleneiodonium (DPI) chloride and reduced glutathione (GSH) treatments. These results indicated a positive feedback loop involving NADPH oxidase and intracellular ROS, which might be the reason for the oxidative burst during injury stress.


Assuntos
Regulação Fúngica da Expressão Gênica , Micélio/genética , NADPH Oxidases/genética , Volvariella/enzimologia , Volvariella/genética , Proteínas Fúngicas/genética , Genoma Fúngico , Glutationa/farmacologia , Micélio/enzimologia , Oniocompostos/farmacologia , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Explosão Respiratória , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA