Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Infect Dis ; 7(8): 2370-2382, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34048219

RESUMO

A series of 43 antiviral corrole-based molecules have been tested on myxoma virus (Lausanne-like T1MYXV strain). An autofluorescent MYXV, with an ANCHOR cassette, has been used for the studies. A2B-fluorocorroles display various toxicities, from 40 being very toxic (CC50 = 1.7 µM) to nontoxic 38 (CC50 > 50 µM), whereas A3-fluorocorroles, with one to three fluorine atoms, are not toxic (with the exception of corroles 9, 10, and 22). In vitro, these compounds show a good selectivity index when used alone. Corrole 35 seems to be the most promising compound, which displays a high selectivity index with the lowest IC50. Interestingly, this "Hit" corrole is easy to synthesize in a two-step reaction. Upscaling production up to 25 g has been carried out for in vivo tests. In vivo studies on New Zealand white rabbits infected with myxoma virus show that symptoms are delayed and animal weight is increased upon treatment, while no acute toxicity of the corrole molecule was detected.


Assuntos
Myxoma virus , Porfirinas , Animais , Antivirais/farmacologia , Myxoma virus/genética , Coelhos
2.
Hum Gene Ther ; 32(3-4): 166-177, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33504260

RESUMO

Oncolytic viruses (OVs) are novel cancer gene therapies that are moving toward the forefront of modern medicines. However, their full therapeutic potential is hindered by the lack of convenient and reliable strategies to visualize and quantify OV growth kinetics and therapeutic efficacy in live cells. In this study, we present an innovative imaging approach for single-cell real-time analysis of OV replication and efficacy in cancer cells. We selected SG33 as a prototypic new OV that derives from wild-type Myxoma virus (MYXV). Lausanne Toulouse 1 (T1) was used as control. We equipped SG33 and T1 genomes with the ANCHOR system and infected a panel of cell lines. The ANCHOR system is composed of a fusion protein (OR-GFP) that specifically binds to a short nonrepetitive DNA target sequence (ANCH) and spreads onto neighboring sequences by protein oligomerization. Its accumulation on the tagged viral DNA results in the creation of fluorescent foci. We found that (1) SG33 and T1-ANCHOR DNA can be readily detected and quantified by live imaging, (2) both OVs generate perinuclear replication foci after infection clustering into horse-shoe shape replication centers, and (3) SG33 replicates to higher levels as compared with T1. Lastly, as a translational proof of concept, we benchmarked SG33 replication and oncolytic efficacy in primary cancer cells derived from pancreatic adenocarcinoma (PDAC) both at the population and at the single-cell levels. In vivo, SG33 significantly replicates in experimental tumors to inhibit tumor growth. Collectively, we provide herein for the first time a novel strategy to quantify each step of OV infection in live cells and in real time by tracking viral DNA and provide first evidence of theranostic strategies for PDAC patients. Thus, this approach has the potential to rationalize the use of OVs for the benefit of patients with incurable diseases.


Assuntos
Adenocarcinoma , Terapia Viral Oncolítica , Vírus Oncolíticos , Neoplasias Pancreáticas , Humanos , Vírus Oncolíticos/genética , Replicação Viral
3.
Biomedicines ; 8(12)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256205

RESUMO

As a live biologic agent, oncolytic vaccinia virus has the ability to target and selectively amplify at tumor sites. We have previously reported that deletion of thymidine kinase and ribonucleotide reductase genes in vaccinia virus can increase the safety and efficacy of the virus. Here, to allow direct visualization of the viral genome in living cells, we incorporated the ANCH target sequence and the OR3-Santaka gene in the double-deleted vaccinia virus. Infection of human tumor cells with ANCHOR3-tagged vaccinia virus enables visualization and quantification of viral genome dynamics in living cells. The results show that the ANCHOR technology permits the measurement of the oncolytic potential of the double deleted vaccinia virus. Quantitative analysis of infection kinetics and of viral DNA replication allow rapid and efficient identification of inhibitors and activators of oncolytic activity. Our results highlight the potential application of the ANCHOR technology to track vaccinia virus and virtually any kind of poxvirus in living cells.

4.
PLoS One ; 9(11): e111605, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25364822

RESUMO

Bluetongue virus (BTV) is an economically important Orbivirus transmitted by biting midges to domestic and wild ruminants. The need for new vaccines has been highlighted by the occurrence of repeated outbreaks caused by different BTV serotypes since 1998. The major group-reactive antigen of BTV, VP7, is conserved in the 26 serotypes described so far, and its role in the induction of protective immunity has been proposed. Viral-based vectors as antigen delivery systems display considerable promise as veterinary vaccine candidates. In this paper we have evaluated the capacity of the BTV-2 serotype VP7 core protein expressed by either a non-replicative canine adenovirus type 2 (Cav-VP7 R0) or a leporipoxvirus (SG33-VP7), to induce immune responses in sheep. Humoral responses were elicited against VP7 in almost all animals that received the recombinant vectors. Both Cav-VP7 R0 and SG33-VP7 stimulated an antigen-specific CD4+ response and Cav-VP7 R0 stimulated substantial proliferation of antigen-specific CD8+ lymphocytes. Encouraged by the results obtained with the Cav-VP7 R0 vaccine vector, immunized animals were challenged with either the homologous BTV-2 or the heterologous BTV-8 serotype and viral burden in plasma was followed by real-time RT-PCR. The immune responses triggered by Cav-VP7 R0 were insufficient to afford protective immunity against BTV infection, despite partial protection obtained against homologous challenge. This work underscores the need to further characterize the role of BTV proteins in cross-protective immunity.


Assuntos
Antígenos Virais/genética , Vírus Bluetongue/genética , Bluetongue/imunologia , Expressão Gênica , Vetores Genéticos/genética , Proteínas do Core Viral/genética , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Bluetongue/prevenção & controle , Bluetongue/virologia , Vírus Bluetongue/imunologia , Linhagem Celular , Cricetinae , Reações Cruzadas/imunologia , Cães , Feminino , Imunidade Celular , Imunização , Masculino , Coelhos , Ovinos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Proteínas do Core Viral/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologia
5.
Vaccine ; 30(9): 1609-16, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22244980

RESUMO

Recombinant poxviruses are well suited for the development of new vaccine vectors. Our previous data supported the idea that Myxomavirus (MYXV) is efficient at priming antibody responses in sheep. To provide definitive evidence on the potential of MYXV for vaccination against infectious diseases in ruminants, we investigated the immune protection provided by recombinant MYXV against bluetongue, a devastating disease in sheep. To test this concept, sheep were injected twice with an MYXV expressing the immunodominant VP2 protein (SG33-VP2). The SG33-VP2 vector promoted the production of neutralising antibodies and partially protected sheep against disease after challenge with a highly virulent strain of serotype-8 bluetongue virus (BTV-8). In contrast, an MYXV expressing both VP2 and VP5 proteins (SG33-VP2/5) elicited very little protection. The expression levels of the VP2 and VP5 proteins suggested that, greater than the co-expression of the VP5 protein which was previously thought to favour anti-VP2 antibody response, the high expression of VP2 may be critical in the MYXV context to stimulate a protective response in sheep. This highlights the requirement for a careful examination of antigen expression before any conclusion can be drawn on the respective role of the protective antigens. As a proof of principle, our study shows that an MYXV vaccine vector is possible in ruminants.


Assuntos
Vírus Bluetongue/patogenicidade , Bluetongue/prevenção & controle , Myxoma virus/imunologia , Carneiro Doméstico/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , Bluetongue/imunologia , Proteínas do Capsídeo/imunologia , Masculino , Ovinos/imunologia , Ovinos/virologia , Carneiro Doméstico/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA