Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ISME J ; 16(9): 2230-2241, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35760884

RESUMO

In-depth understanding of metabolite-mediated plant-nematode interactions can guide us towards novel nematode management strategies. To improve our understanding of the effects of secondary metabolites on soil nematode communities, we grew Arabidopsis thaliana genetically altered in glucosinolate, camalexin, or flavonoid synthesis pathways, and analyzed their root-associated nematode communities using metabarcoding. To test for any modulating effects of the associated microbiota on the nematode responses, we characterized the bacterial and fungal communities. Finally, as a proxy of microbiome-modulating effects on nematode invasion, we isolated the root-associated microbiomes from the mutants and tested their effect on the ability of the plant parasitic nematode Meloidogyne incognita to penetrate tomato roots. Most mutants had altered relative abundances of several nematode taxa with stronger effects on the plant parasitic Meloidogyne hapla than on other root feeding taxa. This probably reflects that M. hapla invades and remains embedded within root tissues and is thus intimately associated with the host. When transferred to tomato, microbiomes from the flavonoid over-producing pap1-D enhanced M. incognita root-invasion, whereas microbiomes from flavonoid-deficient mutants reduced invasion. This suggests microbiome-mediated effect of flavonoids on Meloidogyne infectivity plausibly mediated by the alteration of the abundances of specific microbial taxa in the transferred microbiomes, although we could not conclusively pinpoint such causative microbial taxa.


Assuntos
Arabidopsis , Microbiota , Solanum lycopersicum , Tylenchoidea , Animais , Arabidopsis/genética , Flavonoides , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Solanum lycopersicum/parasitologia , Raízes de Plantas/genética , Tylenchoidea/genética
2.
Chemosphere ; 256: 127156, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32559889

RESUMO

Plant growth-promoting bacteria (PGPB) can promote root uptake and shoot accumulation of cadmium (Cd) in hyperaccumulator plants, but the mechanisms by which PGPB accelerate root-to-shoot transport of Cd is still unknown. A better understanding of these mechanisms is necessary to develop the strategies that can promote the practical phytoextraction of Cd-polluted soils. In this study, we found that Pseudomonas fluorescens accelerates a reversed and a long-distance transport of Cd and sucrose in Sedum alfredii, by examining the xylem and phloem sap and by quantifying the concentrations of Cd and sucrose in shoot and root. The transcriptome sequencing has revealed the up-regulated expressions of starch metabolism and sucrose biosynthesis related genes in the shoots of Cd hyperaccumulator plant S. alfredii that was inoculated with PGPB P. fluorescens. In addition, the genes of sugar, cation and anion transporters were also up-regulated by bacterial treatment, showing a complicated co-expression network with sucrose biosynthesis related genes. The expression levels of Cd transporter genes, such as ZIP1, ZIP2, HMA2, HMA3 and CAX2, were elevated after PGPB inoculation. As a result, the PGPB successfully colonized the root, and promoted the sucrose shoot-to-root transport and Cd root-to-shoot transport in S. alfredii. Since non-photosynthetic root-associated bacteria usually obtain sugars from photosynthetic plants, our results highlight the importance of PGPB-induced changes in hyperaccumlator plants for both the host and the PGPB.


Assuntos
Biodegradação Ambiental , Cádmio/metabolismo , Pseudomonas fluorescens/fisiologia , Sedum/metabolismo , Fotossíntese , Desenvolvimento Vegetal , Raízes de Plantas/metabolismo , Pseudomonas fluorescens/metabolismo , Poluentes do Solo/metabolismo , Sacarose/metabolismo
3.
J Hazard Mater ; 395: 122661, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32305720

RESUMO

Plant growth-promoting bacteria (PGPB) that inhabit hyperaccumulating plants assist cadmium (Cd) absorption, but the underlying mechanism has not been comprehensively studied. For this reason, we combined the fluorescence imaging, and transcriptomic and metabolomic methods in a Cd hyperaccumulator, Sedum alfredii, inoculated or not with PGPB Pseudomonas fluorescens. The results showed that the newly emerged lateral roots, that were heavily colonized by P. fluorescens, are the main entry for Cd influx in S. alfredii. Inoculation with P. fluorescens promoted a lateral root formation of its host plant, leading to a higher Cd phytoremediation efficiency. Furthermore, the plant transcriptome revealed that 146 plant hormone related genes were significantly up-regulated by the bacterial inoculation, with 119 of them showing a complex interaction, which suggests that a hormonal crosstalk participated root development. The targeted metabolomics analysis showed that P. fluorescens inoculation significantly increased indole acetic acid concentration and significantly decreased concentrations of abscisic acid, brassinolide, trans-zeatin, ethylene and jasmonic acid in S. alfredii roots, thereby inducing lateral root emergence. Altogether, our results highlight the importance of PGPB-induced lateral root formation for the increased Cd uptake in a hyperaccumulating plant.


Assuntos
Sedum , Poluentes do Solo , Biodegradação Ambiental , Cádmio/toxicidade , Raízes de Plantas/química , Poluentes do Solo/análise
4.
PLoS One ; 12(3): e0172190, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28257464

RESUMO

During sampling of several Coffea arabica plantations in Tanzania severe root galling, caused by a root-knot nematode was observed. From pure cultures, morphology and morphometrics of juveniles and females matched perfectly with Meloidogyne africana, whereas morphology of the males matched identically with those of Meloidogyne decalineata. Based on their Cox1 sequence, however, the recovered juveniles, females and males were confirmed to belong to the same species, creating a taxonomic conundrum. Adding further to this puzzle, re-examination of M. oteifae type material showed insufficient morphological evidence to maintain its status as a separate species. Consequently, M. decalineata and M. oteifae are synonymized with M. africana, which is herewith redescribed based on results of light and scanning electron microscopy, ribosomal and mitochondrial DNA sequences, isozyme electrophoresis, along with bionomic and cytogenetic features. Multi-gene phylogenetic analysis placed M. africana outside of the three major clades, together with M. coffeicola, M. ichinohei and M. camelliae. This phylogenetic position was confirmed by several morphological features, including cellular structure of the spermatheca, egg mass position, perineal pattern and head shape. Moreover, M. africana was found to be a polyphagous species, demonstrating that "early-branching" Meloidogyne spp. are not as oligophagous as had previously been assumed. Cytogenetic information indicates M. africana (2n = 21) and M. ardenensis (2n = 51-54) to be a triploid mitotic parthenogenetic species, revealing at least four independent origins of mitotic parthenogenesis within the genus Meloidogyne. Furthermore, M. mali (n = 12) was found to reproduce by amphimixis, indicating that amphimictic species with a limited number of chromosomes are widespread in the genus, potentially reflecting the ancestral state of the genus. The wide variation in chromosome numbers and associated changes in reproduction modes indicate that cytogenetic evolution played a crucial role in the speciation of root-knot nematodes and plant-parasitic nematodes in general.


Assuntos
Coffea/parasitologia , Ciclo-Oxigenase 1/genética , Evolução Molecular , Filogenia , Tylenchida/genética , Animais , Classificação , DNA Mitocondrial/genética , Variação Genética , Raízes de Plantas/parasitologia , Especificidade da Espécie , Tanzânia , Tylenchida/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA