Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 128(16): 3795-3806, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38606592

RESUMO

The Hippo signaling pathway is a highly conserved signaling network that plays a central role in regulating cellular growth, proliferation, and organ size. This pathway consists of a kinase cascade that integrates various upstream signals to control the activation or inactivation of YAP/TAZ proteins. Phosphorylated YAP/TAZ is sequestered in the cytoplasm; however, when the Hippo pathway is deactivated, it translocates into the nucleus, where it associates with TEAD transcription factors. This partnership is instrumental in regulating the transcription of progrowth and antiapoptotic genes. Thus, in many cancers, aberrantly hyperactivated YAP/TAZ promotes oncogenesis by contributing to cancer cell proliferation, metastasis, and therapy resistance. Because YAP and TAZ exert their oncogenic effects by binding with TEAD, it is critical to understand this key interaction to develop cancer therapeutics. Previous research has indicated that TEAD undergoes autopalmitoylation at a conserved cysteine, and small molecules that inhibit TEAD palmitoylation disrupt effective YAP/TAZ binding. However, how exactly palmitoylation contributes to YAP/TAZ-TEAD interactions and how the TEAD palmitoylation inhibitors disrupt this interaction remains unknown. Utilizing molecular dynamics simulations, our investigation not only provides detailed atomistic insight into the YAP/TAZ-TEAD dynamics but also unveils that the inhibitor studied influences the binding of YAP and TAZ to TEAD in distinct manners. This discovery has significant implications for the design and deployment of future molecular interventions targeting this interaction.


Assuntos
Lipoilação , Simulação de Dinâmica Molecular , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteínas de Sinalização YAP , Humanos , Aciltransferases/metabolismo , Aciltransferases/antagonistas & inibidores , Aciltransferases/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/química , Regulação Alostérica/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/química , Ligação Proteica , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Fatores de Transcrição de Domínio TEA/química , Fatores de Transcrição de Domínio TEA/metabolismo , Transativadores/metabolismo , Transativadores/química , Transativadores/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/química , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/química , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Proteínas de Sinalização YAP/química , Proteínas de Sinalização YAP/metabolismo
2.
Phys Chem Chem Phys ; 25(4): 3361-3374, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36633205

RESUMO

BRCA1 (Breast Cancer-Associated Protein 1) is a human tumor suppressor that functions as an ubiquitin (Ub) ligase enzyme (E3) and plays a key role in genomic stability and DNA repair. Heterodimerization of BRCA1 with BARD1 (BRCA1-associated RING domain protein 1) is known to increase its Ub ligase activity and is important for its stability, and cooperative activation of UbcH5c (Ub conjugating enzyme (E2)). Recent studies demonstrate the importance of ubiquitination of the nucleosomal H2A C-terminal tail by BRCA1/BARD1-UbcH5c in which its mutations inhibit ubiquitination, predispose cells to chromosomal instability and greatly increase the likelihood of breast and ovarian cancer development. Due to the lack of molecular-level insight on the flexible and dis-ordered H2A C-tail, its ubiquitination mechanism by BRCA1/BARD1-UbcH5c and its function and relationship to cancer susceptibility remain elusive. Here, we use molecular dynamics simulations to provide molecular-level insights into the dynamics of the less-studied H2A C-tail and BRCA1/BARD1-UbcH5c on the nucleosome surface and their effect on ubiquitination. Our results precisely identify the key interactions and residues that trigger conformational transitions of BRCA1/BARD1-UbcH5c, and characterize the important role of histone electrostatics in their dynamics. We provide a mechanistic basis for the H2A C-tail lysine approach to UbcH5c and show the role of H2A C-tail and UbcH5c dynamics in lysine ubiquitination. Furthermore, our data demonstrate the potential for ubiquitination based on the lysine position of the C-tail. Altogether, the findings of this study provide unrevealed insights into the mechanism of H2A C-tail ubiquitination and help us understand the communication between Ub ligase/Ub conjugating enzymes (E3/E2) and nucleosome to regulate ubiquitination machinery, paving the way for the development of effective treatments for cancer and chronic pain.


Assuntos
Histonas , Neoplasias , Humanos , Histonas/metabolismo , Nucleossomos , Ubiquitina-Proteína Ligases/metabolismo , Lisina/metabolismo , Eletricidade Estática , Ubiquitinação , Enzimas de Conjugação de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo
3.
Cancer Discov ; 12(10): 2392-2413, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35924979

RESUMO

Clonal hematopoiesis (CH) is an aging-associated condition characterized by the clonal outgrowth of mutated preleukemic cells. Individuals with CH are at an increased risk of developing hematopoietic malignancies. Here, we describe a novel animal model carrying a recurrent TET2 missense mutation frequently found in patients with CH and leukemia. In a fashion similar to CH, animals show signs of disease late in life when they develop a wide range of myeloid neoplasms, including acute myeloid leukemia (AML). Using single-cell transcriptomic profiling of the bone marrow, we show that disease progression in aged animals correlates with an enhanced inflammatory response and the emergence of an aberrant inflammatory monocytic cell population. The gene signature characteristic of this inflammatory population is associated with poor prognosis in patients with AML. Our study illustrates an example of collaboration between a genetic lesion found in CH and inflammation, leading to transformation and the establishment of blood neoplasms. SIGNIFICANCE: Progression from a preleukemic state to transformation, in the presence of TET2 mutations, is coupled with the emergence of inflammation and a novel population of inflammatory monocytes. Genes characteristic of this inflammatory population are associated with the worst prognosis in patients with AML. These studies connect inflammation to progression to leukemia. See related commentary by Pietras and DeGregori, p. 2234 . This article is highlighted in the In This Issue feature, p. 2221.


Assuntos
Leucemia Mieloide Aguda , Transtornos Mieloproliferativos , Animais , Hematopoese/genética , Inflamação/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Mutação , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia
4.
Chem Sci ; 9(44): 8433-8445, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30542593

RESUMO

Ten-eleven translocation 2 (TET2) is an Fe/α-ketoglutarate (α-KG) dependent enzyme that dealkylates 5-methylcytosine (5mC). The reaction mechanism involves a series of three sequential oxidations that convert 5mC to 5-hydroxy-methylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Our previous biochemical and computational studies uncovered an active site scaffold that is required for wild-type (WT) stepwise oxidation (Nat. Chem. Bio., 13, 181). We showed that the mutation of a single residue, T1372 to some amino acids, such as Glu, can impact the iterative oxidation steps and stop the oxidation of 5hmC to 5fC/caC. However, the source of the stalling at the first oxidation step by some mutant TET proteins still remains unclear. Here, we studied the catalytic mechanism of oxidation of 5hmC to 5fC by WT and T1372E TET2 using an ab initio quantum mechanical/molecular mechanical (QM/MM) approach. Our results suggest that the rate limiting step for WT TET2 involves a hydrogen atom abstraction from the hydroxyl group of 5hmC by the ferryl moiety in the WT. By contrast, our calculations for the T1372E mutant indicate that the rate limiting step for this variant corresponds to a second proton abstraction and the calculated barrier is almost twice as large as for WT TET2. Our results suggest that the large barrier for the 5hmC to 5fC oxidation in this mutant is due (at least in part) to the unfavorable orientation of the substrate in the active site. Combined electron localization function (ELF) and non-covalent interaction (NCI) analyses provide a qualitative description of the evolution of the electronic structure of the active site along the reaction path. Energy decomposition analysis (EDA) has been performed on the WT to investigate the impact of each MM residue on catalytic activity.

5.
Chem Sci ; 9(4): 956-972, 2018 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-29732110

RESUMO

We present Tinker-HP, a massively MPI parallel package dedicated to classical molecular dynamics (MD) and to multiscale simulations, using advanced polarizable force fields (PFF) encompassing distributed multipoles electrostatics. Tinker-HP is an evolution of the popular Tinker package code that conserves its simplicity of use and its reference double precision implementation for CPUs. Grounded on interdisciplinary efforts with applied mathematics, Tinker-HP allows for long polarizable MD simulations on large systems up to millions of atoms. We detail in the paper the newly developed extension of massively parallel 3D spatial decomposition to point dipole polarizable models as well as their coupling to efficient Krylov iterative and non-iterative polarization solvers. The design of the code allows the use of various computer systems ranging from laboratory workstations to modern petascale supercomputers with thousands of cores. Tinker-HP proposes therefore the first high-performance scalable CPU computing environment for the development of next generation point dipole PFFs and for production simulations. Strategies linking Tinker-HP to Quantum Mechanics (QM) in the framework of multiscale polarizable self-consistent QM/MD simulations are also provided. The possibilities, performances and scalability of the software are demonstrated via benchmarks calculations using the polarizable AMOEBA force field on systems ranging from large water boxes of increasing size and ionic liquids to (very) large biosystems encompassing several proteins as well as the complete satellite tobacco mosaic virus and ribosome structures. For small systems, Tinker-HP appears to be competitive with the Tinker-OpenMM GPU implementation of Tinker. As the system size grows, Tinker-HP remains operational thanks to its access to distributed memory and takes advantage of its new algorithmic enabling for stable long timescale polarizable simulations. Overall, a several thousand-fold acceleration over a single-core computation is observed for the largest systems. The extension of the present CPU implementation of Tinker-HP to other computational platforms is discussed.

6.
Nat Chem Biol ; 13(2): 181-187, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27918559

RESUMO

Ten-eleven translocation (TET) enzymes catalyze stepwise oxidation of 5-methylcytosine (mC) to yield 5-hydroxymethylcytosine (hmC) and the rarer bases 5-formylcytosine (fC) and 5-carboxylcytosine (caC). Stepwise oxidation obscures how each individual base forms and functions in epigenetic regulation, and prompts the question of whether TET enzymes primarily serve to generate hmC or are adapted to produce fC and caC as well. By mutating a single, conserved active site residue in human TET2, Thr1372, we uncovered enzyme variants that permit oxidation to hmC but largely eliminate fC and caC. Biochemical analyses, combined with molecular dynamics simulations, elucidated an active site scaffold that is required for wild-type (WT) stepwise oxidation and that, when perturbed, explains the mutants' hmC-stalling phenotype. Our results suggest that the TET2 active site is shaped to enable higher-order oxidation and provide the first TET variants that could be used to probe the biological functions of hmC separately from fC and caC.


Assuntos
5-Metilcitosina/análogos & derivados , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Mutação , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , 5-Metilcitosina/química , 5-Metilcitosina/metabolismo , Domínio Catalítico/genética , Proteínas de Ligação a DNA/química , Dioxigenases , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Oxirredução , Proteínas Proto-Oncogênicas/química
7.
J Mol Model ; 18(8): 3563-76, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22331106

RESUMO

N,N',N″-triethylenethiophosphoramide (Thiotepa) and its oxo analogue (Tepa) as the major metabolite are trifunctional alkylating agents with a broad spectrum of antitumor activity. In vivo and vitro studies show alkylation of DNA by Thiotepa and Tepa can follow two pathways, but it remains unclear which pathway represents the precise mechanism of action. In pathway 1, these agents are capable of forming cross-links with DNA molecules via two different mechanisms. In the first mechanism, the ring opening reaction is initiated by protonating the aziridine, which then becomes the primary target of nucleophilic attack by the N7-Guanine. The second one is a direct nucleophilic ring opening of aziridyl group. Thiotepa and Tepa in pathway 2, act as a cell penetrating carrier for aziridine, which is released via hydrolysis. The released aziridine can form a cross-link with N7-Guanine. In this study, we calculated the activation free energy and kinetic rate constant for hydrolysis of these agents and explored interaction of aziridine with Guanine to predict the most probable mechanism by applying density functional theory (DFT) using B3LYP method. In addition, solvent effect was introduced using the conductor-like polarizable continuum model (CPCM) in water, THF and diethylether. Hyperconjugation stabilization factors that have an effect on stability of generated transition state were investigated by natural bond order (NBO) analysis. Furthermore, quantum theory of atoms in molecules (QTAIM) analysis was performed to extract the bond critical points (BCP) properties, because the electron densities can be considered as a good description of the strength of different types of interactions.


Assuntos
Simulação por Computador , Modelos Moleculares , Tiotepa/química , Trietilenofosforamida/química , Algoritmos , Aziridinas/química , Catálise , Guanina/química , Ligação de Hidrogênio , Hidrólise , Isomerismo , Cinética , Conformação Molecular , Teoria Quântica , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA