Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cancer Gene Ther ; 30(9): 1285-1295, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37353558

RESUMO

Ewing sarcoma (EWS) is a challenging pediatric cancer characterized by vast intra-tumor heterogeneity. We evaluated the RNA-binding protein IGF2BP3, whose high expression correlates with a poor prognosis and an elevated tendency of metastases, as a possible soluble mediator of inter-cellular communication in EWS. Our data demonstrate that (i) IGF2BP3 is detected in cell supernatants, and it is released inside extracellular vesicles (EVs); (ii) EVs from IGF2BP3-positive or IGF2BP3-negative EWS cells reciprocally affect cell migration but not the proliferation of EWS recipient cells; (iii) EVs derived from IGF2BP3-silenced cells have a distinct miRNA cargo profile and inhibit the PI3K/Akt pathway in recipient cells; (iv) the 11 common differentially expressed miRNAs associated with IGF2BP3-positive and IGF2BP3-negative EVs correctly group IGF2BP3-positive and IGF2BP3-negative clinical tissue specimens. Overall, our data suggest that IGF2BP3 can participate in the modulation of phenotypic heterogeneity.


Assuntos
Vesículas Extracelulares , Sarcoma de Ewing , Criança , Humanos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Vesículas Extracelulares/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Fusão Oncogênica/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patologia
2.
Cancers (Basel) ; 14(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36358827

RESUMO

Capicua transcriptional repressor (CIC)-rearranged sarcoma, belonging to the undifferentiated round cells sarcoma family, is characterized by high metastatic rate and poor chemo response. CIC sarcoma represents a new entity harboring the recurrent chromosomal translocation between CIC and, in most of the cases, DUX4. CIC-DUX4 imposes a CIC-specific transcriptional signature, which drives cell transformation, proliferation, and migration. While the discovery of the fusion represented the first evidence of a role of CIC in cancer, a complete comprehension of CIC-rearranged activity is still required before providing new potential avenues for therapy. To date, a specific and effective treatment for CIC sarcoma has yet to be defined. In this review, we initially highlight the clinical features and pathogenesis of CIC-rearranged sarcomas along with current therapeutic approaches and then focus on the specific oncogenic mechanisms driven by the CIC-rearrangement. We discuss novel therapeutic options evoked by the aberrant relations of CIC-DUX4 with the IGF system, DUSP6, P300/CBP, and CCNE1. We also discuss how different mutations involving CIC might converge on a common upregulation of CIC-target genes across human cancers. A deeper understanding of the oncogenic mechanisms driven by the chimera CIC-DUX4 might provide novel therapeutic opportunities with a general impact in cancer.

3.
Cancer Res ; 82(4): 708-720, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34903601

RESUMO

Capicua-double homeobox 4 (CIC-DUX4)-rearranged sarcomas (CDS) are extremely rare, highly aggressive primary sarcomas that represent a major therapeutic challenge. Patients are treated according to Ewing sarcoma protocols, but CDS-specific therapies are strongly needed. In this study, RNA sequencing was performed on patient samples to identify a selective signature that differentiates CDS from Ewing sarcoma and other fusion-driven sarcomas. This signature was used to validate the representativeness of newly generated CDS experimental models-patient-derived xenografts (PDX) and PDX-derived cell lines-and to identify specific therapeutic vulnerabilities. Annotation analysis of differentially expressed genes and molecular gene validation highlighted an HMGA2/IGF2BP/IGF2/IGF1R/AKT/mTOR axis that characterizes CDS and renders the tumors particularly sensitive to combined treatments with trabectedin and PI3K/mTOR inhibitors. Trabectedin inhibited IGF2BP/IGF2/IGF1R activity, but dual inhibition of the PI3K and mTOR pathways was required to completely dampen downstream signaling mediators. Proof-of-principle efficacy for the combination of the dual AKT/mTOR inhibitor NVP-BEZ235 (dactolisib) with trabectedin was obtained in vitro and in vivo using CDS PDX-derived cell lines, demonstrating a strong inhibition of local tumor growth and multiorgan metastasis. Overall, the development of representative experimental models (PDXs and PDX-derived cell lines) has helped to identify the unique sensitivity of the CDS to AKT/mTOR inhibitors and trabectedin, revealing a mechanism-based therapeutic strategy to fight this lethal cancer. SIGNIFICANCE: This study identifies altered HMGA2/IGF2BP/IGF2 signaling in CIC-DUX4 sarcomas and provides proof of principle for combination therapy with trabectedin and AKT/mTOR dual inhibitors to specifically combat the disease.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Proteínas de Fusão Oncogênica/genética , Sarcoma/tratamento farmacológico , Neoplasias de Tecidos Moles/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Redes Reguladoras de Genes , Humanos , Estimativa de Kaplan-Meier , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Proteínas de Fusão Oncogênica/metabolismo , Inibidores de Proteínas Quinases/administração & dosagem , Sarcoma/genética , Sarcoma/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Neoplasias de Tecidos Moles/genética , Neoplasias de Tecidos Moles/metabolismo , Trabectedina/administração & dosagem , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
4.
Artigo em Inglês | MEDLINE | ID: mdl-29731738

RESUMO

Insulin-like growth factor 2 (IGF2) mRNA-binding protein 3 (IGF2BP3) is an oncofetal protein that binds RNA, thereby influencing the fate of target transcripts. IGF2BP3 is synthesized de novo in cancer, where it promotes proliferation, drug resistance, and metastasis via both IGF2-dependent and IGF2-independent mechanisms. Ewing sarcoma (ES) is a rare bone and soft tissue tumor in which the IGF system plays a pivotal role. This study aimed to investigate the effect of IGF2BP3 on the regulation of the IGF system in ES. Among the components of the IGF axis, a direct significant correlation was identified between IGF2BP3 and IGF1R at mRNA and protein levels in two independent series of clinical specimens from patients with localized ES. After the formal demonstration of a direct association between IGF2BP3 and IGF1R mRNA using ribo-immunoprecipitation assay, we performed in vitro studies using A673 and TC-71 ES cell lines to demonstrate that IGF2BP3 loss promotes the downregulation of IGF1R and a decreased biological response to IGF1, represented by reduced migration and cell growth. Additionally, the compensatory activation of insulin receptor (IR) and its mitogenic ligand IGF2 is triggered in some but not all cell lines in response to IGF2BP3-mediated IGF1R loss. These findings have therapeutic implications because cells with a decreased expression of IGF2BP3/IGF1R axis but an increased expression of the IR/IGF2 loop display higher sensitivity to the dual inhibitor OSI-906 than do control cells. Therefore, studies on IGF2BP3, which was confirmed as a post-transcriptional regulator of IGF1R, provide a step forward in the identification of new mechanisms regulating the IGF system. In addition, our results demonstrate that the detection of IGF2BP3 expression should be combined with the assessment of the IGF1R/IR ratio to predict cell responses to anti-IGF1R/IR agents.

5.
Clin Cancer Res ; 24(15): 3704-3716, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29703820

RESUMO

Purpose: Large-scale sequencing studies have indicated that besides genomic alterations, the posttranscriptional regulation of gene expression or epigenetic mechanisms largely influences the clinical behavior of Ewing sarcoma. We investigated the significance of the RNA-binding protein IGF2BP3 in the regulation of Ewing sarcoma aggressiveness.Experimental Design: Explorative study was performed in 14 patients with localized Ewing sarcoma using RNA sequencing. Next, 128 patients with localized Ewing sarcoma were divided into two cohorts. In the training set, 29 Ewing sarcoma samples were analyzed using Affymetrix GeneChip arrays. In the validation set, 99 Ewing sarcoma samples were examined using qRT-PCR. Patient-derived cell lines and experimental models were used for functional studies.Results:Univariate and multivariate analyses indicated IGF2BP3 as a potent indicator of poor prognosis. Furthermore, ABCF1 mRNA was identified as a novel partner of IGF2BP3. Functional studies indicated IGF2BP3 as an oncogenic driver and ABCF1 mRNA as a sponge that by binding IGF2BP3, partly repressed its functions. The combined evaluation of IGF2BP3 and ABCF1 could identify different patient outcomes-high IGF2BP3 and low ABCF1 levels indicated poor survival (25%), whereas low IGF2BP3 and high ABCF1 levels indicated favorable survival (85.5%). The bromodomain and extraterminal domain inhibitor (BETi) JQ1 decreased IGF2BP3 expression, modified the expression of its validated targets and inhibited the capability of Ewing sarcoma cells to grow under anchorage-independent conditions.Conclusions: The combined assessment of IGF2BP3 and ABCF1 predicts recurrence in Ewing sarcoma patients. Thus, for patients with high expression of IGF2BP3 and poor probability of survival, the use of BETis should be clinically evaluated. Clin Cancer Res; 24(15); 3704-16. ©2018 AACR.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Epigênese Genética/genética , Proteínas de Ligação a RNA/genética , Sarcoma de Ewing/genética , Idoso , Animais , Biópsia , Proliferação de Células/genética , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Xenoenxertos , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Processamento de Proteína Pós-Traducional/genética , Sarcoma de Ewing/patologia , Sarcoma de Ewing/terapia , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA