Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Pharmacology ; : 1-15, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38569476

RESUMO

INTRODUCTION: Acute myeloid leukemia (AML) is a cancer of the hematopoietic system characterized by hyperproliferation of undifferentiated cells of the myeloid lineage. While most of AML therapies are focused toward tumor debulking, all-trans retinoic acid (ATRA) induces neutrophil differentiation in the AML subtype acute promyelocytic leukemia (APL). Macroautophagy has been extensively investigated in the context of various cancers and is often dysregulated in AML where it can have context-dependent pro- or anti-leukemogenic effects. On the contrary, the implications of chaperone-mediated autophagy (CMA) on the pathophysiology of diseases are still being explored and its role in AML remains elusive. METHODS: We took advantage of human AML primary samples and databases to analyze CMA gene expression and activity. Furthermore, we used ATRA-sensitive (NB4) and -resistant (NB4-R1) APL cells to further dissect a potential function for CMA in ATRA-mediated neutrophil differentiation. NB4-R1 cells are unique in that they do respond to retinoic acid transcriptionally but do not mature in response to retinoid signaling alone unless maturation is triggered by adding cyclic adenosine monophosphate. RESULTS: Here, we report that CMA-related mRNA transcripts are significantly higher expressed in immature hematopoietic cells as compared to neutrophils, contrasting the macroautophagy gene expression patterns. Accordingly, lysosomal degradation of an mCherry-KFERQ CMA reporter decreases during ATRA-induced differentiation of APL cells. On the other hand, using NB4-R1 cells we found that macroautophagy flux primed ATRA-resistant NB4-R1 cells to differentiate upon ATRA treatment but reduced the association of lysosome-associated membrane protein type 2A (LAMP-2A) and heat shock protein family A (Hsp70) member 8 (HSPA8), necessary for complete neutrophil maturation. Accordingly, depletion of HSPA8 attenuated CMA activity and facilitated APL cell differentiation. In contrast, maintaining high CMA activity by ectopic expression of LAMP-2A impeded APL differentiation. CONCLUSION: Overall, our findings suggest that APL neutrophil differentiation requires CMA inactivation and that this pathway predominantly depends on HSPA8 and is possibly assisted by other co-chaperones.

2.
Mol Ther Nucleic Acids ; 33: 794-809, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37662965

RESUMO

Gene therapy strategies that effectively inhibit HIV-1 replication are needed to reduce the requirement for lifelong antiviral therapy and potentially achieve a functional cure. We previously designed self-activating lentiviral vectors that efficiently delivered and expressed a Vif-resistant mutant of APOBEC3G (A3G-D128K) to T cells, which potently inhibited HIV-1 replication and spread with no detectable virus. Here, we developed vectors that express A3G-D128K, membrane-associated fusion inhibitor peptide mC46, and O6-methylguanine-DNA-methyltransferase (MGMT) selectable marker for in vivo selection of transduced CD34+ hematopoietic stem and progenitor cells. MGMT-selected T cell lines MT4, CEM, and PM1 expressing A3G-D128K (with or without mC46) potently inhibited NL4-3 infection up to 45 days post infection with no detectable viral replication. Expression of mC46 was sufficient to block infection >80% in a single-cycle assay. Importantly, expression of mC46 provided a selective advantage to the A3G-D128K-modified T cells in the presence of replication competent virus. This combinational approach to first block HIV-1 entry with mC46, and then block any breakthrough infection with A3G-D128K, could provide an effective gene therapy treatment and a potential functional cure for HIV-1 infection.

3.
Mol Ther Methods Clin Dev ; 28: 366-384, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36879849

RESUMO

Barriers to effective gene therapy for many diseases include the number of modified target cells required to achieve therapeutic outcomes and host immune responses to expressed therapeutic proteins. As long-lived cells specialized for protein secretion, antibody-secreting B cells are an attractive target for foreign protein expression in blood and tissue. To neutralize HIV-1, we developed a lentiviral vector (LV) gene therapy platform for delivery of the anti-HIV-1 immunoadhesin, eCD4-Ig, to B cells. The EµB29 enhancer/promoter in the LV limited gene expression in non-B cell lineages. By engineering a knob-in-hole-reversed (KiHR) modification in the CH3-Fc eCD4-Ig domain, we reduced interactions between eCD4-Ig and endogenous B cell immunoglobulin G proteins, which improved HIV-1 neutralization potency. Unlike previous approaches in non-lymphoid cells, eCD4-Ig-KiHR produced in B cells promoted HIV-1 neutralizing protection without requiring exogenous TPST2, a tyrosine sulfation enzyme required for eCD4-Ig-KiHR function. This finding indicated that B cell machinery is well suited to produce therapeutic proteins. Lastly, to overcome the inefficient transduction efficiency associated with VSV-G LV delivery to primary B cells, an optimized measles pseudotyped LV packaging methodology achieved up to 75% transduction efficiency. Overall, our findings support the utility of B cell gene therapy platforms for therapeutic protein delivery.

4.
Cell Death Dis ; 13(5): 448, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35538058

RESUMO

The family of hexokinases (HKs) catalyzes the first step of glycolysis, the ATP-dependent phosphorylation of glucose to glucose-6-phosphate. While HK1 and HK2 are ubiquitously expressed, the less well-studied HK3 is primarily expressed in hematopoietic cells and tissues and is highly upregulated during terminal differentiation of some acute myeloid leukemia (AML) cell line models. Here we show that expression of HK3 is predominantly originating from myeloid cells and that the upregulation of this glycolytic enzyme is not restricted to differentiation of leukemic cells but also occurs during ex vivo myeloid differentiation of healthy CD34+ hematopoietic stem and progenitor cells. Within the hematopoietic system, we show that HK3 is predominantly expressed in cells of myeloid origin. CRISPR/Cas9 mediated gene disruption revealed that loss of HK3 has no effect on glycolytic activity in AML cell lines while knocking out HK2 significantly reduced basal glycolysis and glycolytic capacity. Instead, loss of HK3 but not HK2 led to increased sensitivity to ATRA-induced cell death in AML cell lines. We found that HK3 knockout (HK3-null) AML cells showed an accumulation of reactive oxygen species (ROS) as well as DNA damage during ATRA-induced differentiation. RNA sequencing analysis confirmed pathway enrichment for programmed cell death, oxidative stress, and DNA damage response in HK3-null AML cells. These signatures were confirmed in ATAC sequencing, showing that loss of HK3 leads to changes in chromatin configuration and increases the accessibility of genes involved in apoptosis and stress response. Through isoform-specific pulldowns, we furthermore identified a direct interaction between HK3 and the proapoptotic BCL-2 family member BIM, which has previously been shown to shorten myeloid life span. Our findings provide evidence that HK3 is dispensable for glycolytic activity in AML cells while promoting cell survival, possibly through direct interaction with the BH3-only protein BIM during ATRA-induced neutrophil differentiation.


Assuntos
Hexoquinase , Leucemia Mieloide Aguda , Sobrevivência Celular/genética , Glicólise/genética , Hexoquinase/genética , Hexoquinase/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Células Mieloides/metabolismo
5.
Blood Adv ; 6(18): 5267-5278, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-35404997

RESUMO

Administration of ex vivo expanded somatic myeloid progenitors has been explored as a way to facilitate a more rapid myeloid recovery and improve overall survival after myeloablation. Recent advances in induced pluripotent stem cell (iPSC) technologies have created alternative platforms for supplying off-the-shelf immunologically compatible myeloid progenitors, including cellular products derived from major histocompatibility complex (MHC) homozygous superdonors, potentially increasing the availability of MHC-matching cells and maximizing the utility of stem cell banking. However, the teratogenic and tumorigenic potential of iPSC-derived progenitor cells and whether they will induce alloreactive antibodies upon transfer remain unclear. We evaluated the safety and efficacy of using CD34+CD45+ hematopoietic progenitors derived from MHC homozygous iPSCs (iHPs) to treat cytopenia after myeloablative hematopoietic stem cell (HSC) transplantation in a Mauritian cynomolgus macaque (MCM) nonhuman primate (NHP) model. We demonstrated that infusion of iHPs was well tolerated and safe, observing no teratomas or tumors in the MCMs up to 1 year after HSC transplantation and iHP infusion. Importantly, the iHPs also did not induce significant levels of alloantibodies in MHC-matched or -mismatched immunocompetent MCMs, even after increasing MHC expression on iHPs with interferon-γ. These results support the feasibility of iHP use in the setting of myeloablation and suggest that iHP products pose a low risk of inducing alloreactive antibodies.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Pluripotentes Induzidas , Animais , Antígenos CD34 , Interferon gama , Isoanticorpos , Macaca fascicularis , Complexo Principal de Histocompatibilidade
6.
Int J Mol Sci ; 23(4)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35216446

RESUMO

Human hematopoietic stem/progenitor cell (HSPC)-based gene therapy is a promising direction for curing HIV-1-infected individuals. The zinc finger protein (2LTRZFP) designed to target the 2-LTR-circle junction of HIV-1 cDNA was previously reported as an intracellular antiviral molecular scaffold that prevents HIV integration. Here, we elucidate the efficacy and safety of using 2LTRZFP in human CD34+ HSPCs. We transduced 2LTRZFP which has the mCherry tag (2LTRZFPmCherry) into human CD34+ HSPCs using a lentiviral vector. The 2LTRZFPmCherry-transduced HSPCs were subsequently differentiated into macrophages. The expression levels of pro-apoptotic proteins of the 2LTRZFPmCherry-transduced HSPCs showed no significant difference from those of the non-transduced control. Furthermore, the 2LTRZFPmCherry-transduced HSPCs were successfully differentiated into mature macrophages, which had normal phagocytic function. The cytokine secretion assay demonstrated that 2LTRZFPmCherry-transduced CD34+ derived macrophages promoted the polarization towards classically activated (M1) subtypes. More importantly, the 2LTRZFPmCherry transduced cells significantly exhibited resistance to HIV-1 integration in vitro. Our findings demonstrate that the 2LTRZFPmCherry-transduced macrophages were found to be functionally and phenotypically normal, with no adverse effects of the anti-HIV-1 scaffold. Our data suggest that the anti-HIV-1 integrase scaffold is a promising antiviral molecule that could be applied to human CD34+ HSPC-based gene therapy for AIDS patients.


Assuntos
Infecções por HIV/metabolismo , HIV-1/patogenicidade , Células-Tronco Hematopoéticas/metabolismo , Macrófagos/metabolismo , Células-Tronco/metabolismo , Dedos de Zinco/fisiologia , Antígenos CD34/metabolismo , Terapia Genética/métodos , Humanos
7.
Nucleic Acids Res ; 49(12): e70, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-33849057

RESUMO

Technical challenges remain in the sequencing of RNA viruses due to their high intra-host diversity. This bottleneck is particularly pronounced when interrogating long-range co-evolved genetic interactions given the read-length limitations of next-generation sequencing platforms. This has hampered the direct observation of these genetic interactions that code for protein-protein interfaces with relevance in both drug and vaccine development. Here we overcome these technical limitations by developing a nanopore-based long-range viral sequencing pipeline that yields accurate single molecule sequences of circulating virions from clinical samples. We demonstrate its utility in observing the evolution of individual HIV Gag-Pol genomes in response to antiviral pressure. Our pipeline, called Multi-read Hairpin Mediated Error-correction Reaction (MrHAMER), yields >1000s of viral genomes per sample at 99.9% accuracy, maintains the original proportion of sequenced virions present in a complex mixture, and allows the detection of rare viral genomes with their associated mutations present at <1% frequency. This method facilitates scalable investigation of genetic correlates of resistance to both antiviral therapy and immune pressure and enables the identification of novel host-viral and viral-viral interfaces that can be modulated for therapeutic benefit.


Assuntos
HIV/genética , Sequenciamento por Nanoporos/métodos , DNA Complementar , Farmacorresistência Viral/genética , Evolução Molecular , Proteínas de Fusão gag-pol/genética , Genoma Viral , HIV/isolamento & purificação , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Humanos , Mutação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos
8.
Mol Ther Nucleic Acids ; 18: 1023-1038, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31778955

RESUMO

Strategies to control HIV-1 replication without antiviral therapy are needed to achieve a functional cure. To exploit the innate antiviral function of restriction factor cytidine deaminase APOBEC3G (A3G), we developed self-activating lentiviral vectors that efficiently deliver HIV-1 Vif-resistant mutant A3G-D128K to target cells. To circumvent APOBEC3 expression in virus-producing cells, which diminishes virus infectivity, a vector containing two overlapping fragments of A3G-D128K was designed that maintained the gene in an inactive form in the virus-producer cells. However, during transduction of target cells, retroviral recombination between the direct repeats reconstituted an active A3G-D128K in 89%-98% of transduced cells. Lentiviral vectors that expressed A3G-D128K transduced CD34+ hematopoietic stem and progenitor cells with a high efficiency (>30%). A3G-D128K expression in T cell lines CEM, CEMSS, and PM1 potently inhibited spreading infection of several HIV-1 subtypes by C-to-U deamination leading to lethal G-to-A hypermutation and inhibition of reverse transcription. SIVmac239 and HIV-2 were not inhibited, since their Vifs degraded A3G-D128K. A3G-D128K expression in CEM cells potently suppressed HIV-1 replication for >3.5 months without detectable resistant virus, suggesting a high genetic barrier for the emergence of A3G-D128K resistance. Because of this, A3G-D128K expression in HIV-1 target cells is a potential anti-HIV gene therapy approach that could be combined with other therapies for the treatment and functional cure of HIV-1 infection.

9.
Blood ; 134(16): 1298-1311, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31416800

RESUMO

Therapeutic gene delivery to hematopoietic stem cells (HSCs) holds great potential as a life-saving treatment of monogenic, oncologic, and infectious diseases. However, clinical gene therapy is severely limited by intrinsic HSC resistance to modification with lentiviral vectors (LVs), thus requiring high doses or repeat LV administration to achieve therapeutic gene correction. Here we show that temporary coapplication of the cyclic resveratrol trimer caraphenol A enhances LV gene delivery efficiency to human and nonhuman primate hematopoietic stem and progenitor cells with integrating and nonintegrating LVs. Although significant ex vivo, this effect was most dramatically observed in human lineages derived from HSCs transplanted into immunodeficient mice. We further show that caraphenol A relieves restriction of LV transduction by altering the levels of interferon-induced transmembrane (IFITM) proteins IFITM2 and IFITM3 and their association with late endosomes, thus augmenting LV core endosomal escape. Caraphenol A-mediated IFITM downregulation did not alter the LV integration pattern or bias lineage differentiation. Taken together, these findings compellingly demonstrate that the pharmacologic modification of intrinsic immune restriction factors is a promising and nontoxic approach for improving LV-mediated gene therapy.


Assuntos
Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/virologia , Proteínas de Membrana/efeitos dos fármacos , Resveratrol/farmacologia , Transdução Genética/métodos , Animais , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Vetores Genéticos , Xenoenxertos , Humanos , Lentivirus , Proteínas de Membrana/metabolismo , Camundongos , Transporte Proteico/efeitos dos fármacos
10.
Mol Ther Methods Clin Dev ; 13: 27-39, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-30603655

RESUMO

Lentiviral vectors (LVs) pseudotyped with the measles virus hemagglutinin (H) and fusion (F) glycoproteins have been reported to more efficiently transduce hematopoietic stem and progenitor cells (HSPCs) compared with vesicular stomatitis virus glycoprotein (VSV-G) pseudotyped LVs. However, a limit to H/F LV use is the low titer of produced vector. Here we show that measles receptor (CD46) expression on H/F transfected HEK293T vector-producing cells caused adjacent cell membrane fusion, resulting in multinucleate syncytia formation and death prior to peak vector production, leading to contaminating cell membranes that co-purified with LV. H/F LVs produced in CD46 null HEK293T cells, generated by CRISPR/Cas9-mediated knockout of CD46, produced 2-fold higher titer vector compared with LVs produced in CD46+ HEK293T cells. This resulted in approximately 2- to 3-fold higher transduction of HSPCs while significantly reducing target cell cytotoxicity caused by producer cell contaminates. Improved H/F LV entry into HSPCs and distinct entry mechanisms compared with VSV-G LV were also observed by confocal microscopy. Given that vector production is a major source of cost and variability in clinical trials of gene therapy, we propose that the use of CD46 null packaging cells may help to address these challenges.

11.
Proc Natl Acad Sci U S A ; 115(43): E10069-E10078, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30301809

RESUMO

Rapamycin and its derivatives are specific inhibitors of mammalian target of rapamycin (mTOR) kinase and, as a result, are well-established immunosuppressants and antitumorigenic agents. Additionally, this class of drug promotes gene delivery by facilitating lentiviral vector entry into cells, revealing its potential to improve gene therapy efforts. However, the precise mechanism was unknown. Here, we report that mTOR inhibitor treatment results in down-regulation of the IFN-induced transmembrane (IFITM) proteins. IFITM proteins, especially IFITM3, are potent inhibitors of virus-cell fusion and are broadly active against a range of pathogenic viruses. We found that the effect of rapamycin treatment on lentiviral transduction is diminished upon IFITM silencing or knockout in primary and transformed cells, and the extent of transduction enhancement depends on basal expression of IFITM proteins, with a major contribution from IFITM3. The effect of rapamycin treatment on IFITM3 manifests at the level of protein, but not mRNA, and is selective, as many other endosome-associated transmembrane proteins are unaffected. Rapamycin-mediated degradation of IFITM3 requires endosomal trafficking, ubiquitination, endosomal sorting complex required for transport (ESCRT) machinery, and lysosomal acidification. Since IFITM proteins exhibit broad antiviral activity, we show that mTOR inhibition also promotes infection by another IFITM-sensitive virus, Influenza A virus, but not infection by Sendai virus, which is IFITM-resistant. Our results identify the molecular basis by which mTOR inhibitors enhance virus entry into cells and reveal a previously unrecognized immunosuppressive feature of these clinically important drugs. In addition, this study uncovers a functional convergence between the mTOR pathway and IFITM proteins at endolysosomal membranes.


Assuntos
Antivirais/farmacologia , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Viroses/tratamento farmacológico , Viroses/metabolismo , Internalização do Vírus/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Endossomos/virologia , Células HEK293 , Células HeLa , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Transporte Proteico/efeitos dos fármacos , Sirolimo/farmacologia , Viroses/virologia
12.
Oxid Med Cell Longev ; 2018: 1482795, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29743969

RESUMO

Autophagy is an intracellular degradation system that ensures a dynamic recycling of a variety of building blocks required for self-renewal, homeostasis, and cell survival under stress. We used primary acute myeloid leukemia (AML) samples and human AML cell lines to investigate the regulatory mechanisms of autophagy and its role in AML differentiation. We found a significantly lower expression of key autophagy- (ATG-) related genes in primary AML as compared to healthy granulocytes, an increased autophagic activity during all-trans retinoic acid- (ATRA-) induced neutrophil differentiation, and an impaired AML differentiation upon inhibition of ATG3, ATG4D, and ATG5. Supporting the notion of noncanonical autophagy, we found that ATRA-induced autophagy was Beclin1-independent compared to starvation- or arsenic trioxide- (ATO-) induced autophagy. Furthermore, we identified PU.1 as positive transcriptional regulator of ATG3, ATG4D, and ATG5. Low PU.1 expression in AML may account for low ATG gene expression in this disease. Low expression of the autophagy initiator ULK1 in AML can partially be attributed to high expression of the ULK1-targeting microRNA-106a. Our data clearly suggest that granulocytic AML differentiation relies on noncanonical autophagy pathways and that restoring autophagic activity might be beneficial in differentiation therapies.


Assuntos
Autofagia/genética , Diferenciação Celular/genética , Expressão Gênica/genética , Leucemia Mieloide Aguda/genética , Linhagem Celular Tumoral , Humanos , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/terapia , Fenótipo
13.
PLoS Pathog ; 14(2): e1006892, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29462184

RESUMO

Several mammalian arenaviruses (mammarenaviruses) cause hemorrhagic fevers in humans and pose serious public health concerns in their endemic regions. Additionally, mounting evidence indicates that the worldwide-distributed, prototypic mammarenavirus, lymphocytic choriomeningitis virus (LCMV), is a neglected human pathogen of clinical significance. Concerns about human-pathogenic mammarenaviruses are exacerbated by of the lack of licensed vaccines, and current anti-mammarenavirus therapy is limited to off-label use of ribavirin that is only partially effective. Detailed understanding of virus/host-cell interactions may facilitate the development of novel anti-mammarenavirus strategies by targeting components of the host-cell machinery that are required for efficient virus multiplication. Here we document the generation of a recombinant LCMV encoding a nucleoprotein (NP) containing an affinity tag (rLCMV/Strep-NP) and its use to capture the NP-interactome in infected cells. Our proteomic approach combined with genetics and pharmacological validation assays identified ATPase Na+/K+ transporting subunit alpha 1 (ATP1A1) and prohibitin (PHB) as pro-viral factors. Cell-based assays revealed that ATP1A1 and PHB are involved in different steps of the virus life cycle. Accordingly, we observed a synergistic inhibitory effect on LCMV multiplication with a combination of ATP1A1 and PHB inhibitors. We show that ATP1A1 inhibitors suppress multiplication of Lassa virus and Candid#1, a live-attenuated vaccine strain of Junín virus, suggesting that the requirement of ATP1A1 in virus multiplication is conserved among genetically distantly related mammarenaviruses. Our findings suggest that clinically approved inhibitors of ATP1A1, like digoxin, could be repurposed to treat infections by mammarenaviruses pathogenic for humans.


Assuntos
Coriomeningite Linfocítica/metabolismo , Vírus da Coriomeningite Linfocítica/metabolismo , Nucleoproteínas/metabolismo , Mapas de Interação de Proteínas , Proteoma/análise , Proteínas Repressoras/fisiologia , ATPase Trocadora de Sódio-Potássio/fisiologia , Células A549 , Animais , Arenaviridae/fisiologia , Células Cultivadas , Chlorocebus aethiops , Cricetinae , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/fisiologia , Camundongos , Proibitinas , Ligação Proteica , Proteínas Repressoras/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Células Vero
14.
Mol Ther ; 26(1): 320-328, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29102562

RESUMO

Gene therapy currently in development for hemoglobinopathies utilizes ex vivo lentiviral transduction of CD34+ hematopoietic stem and progenitor cells (HSPCs). A small-molecule screen identified prostaglandin E2 (PGE2) as a positive mediator of lentiviral transduction of CD34+ cells. Supplementation with PGE2 increased lentiviral vector (LVV) transduction of CD34+ cells approximately 2-fold compared to control transduction methods with no effect on cell viability. Transduction efficiency was consistently increased in primary CD34+ cells from multiple normal human donors and from patients with ß-thalassemia or sickle cell disease. Notably, PGE2 increased transduction of repopulating human HSPCs in an immune-deficient (nonobese diabetic/severe combined immunodeficiency/interleukin-2 gamma receptor null [NSG]) xenotransplantation mouse model without evidence of in vivo toxicity, lineage bias, or a de novo bias of lentiviral integration sites. These data suggest that PGE2 improves lentiviral transduction and increases vector copy number, therefore resulting in increased transgene expression. As a result, PGE2 may be useful in clinical gene therapy applications using lentivirally modified HSPCs.


Assuntos
Dinoprostona/metabolismo , Vetores Genéticos/genética , Células-Tronco Hematopoéticas/metabolismo , Lentivirus/genética , Transdução Genética , Anemia Falciforme/genética , Anemia Falciforme/metabolismo , Animais , Antígenos CD34/metabolismo , Linhagem Celular , Biblioteca Gênica , Técnicas de Transferência de Genes , Terapia Genética , Globinas/genética , Humanos , Antígenos Comuns de Leucócito/metabolismo , Camundongos , Transgenes , Transplante Heterólogo , Internalização do Vírus , Talassemia beta/genética , Talassemia beta/metabolismo
15.
Cell Death Differ ; 24(5): 866-877, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28362429

RESUMO

The hematopoietic Ets-domain transcription factor PU.1/SPI1 orchestrates myeloid, B- and T-cell development, and also supports hematopoietic stem cell maintenance. Although PU.1 is a renowned tumor suppressor in acute myeloid leukemia (AML), a disease characterized by an accumulation of immature blast cells, comprehensive studies analyzing the role of PU.1 during cell death responses in AML treatment are missing. Modulating PU.1 expression in AML cells, we found that PU.1 supports tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis via two mechanisms: (a) by repressing NF-κB activity via a novel direct PU.1-RelA/p65 protein-protein interaction, and (b) by directly inducing TRAIL receptor DR5 expression. Thus, expression of NF-κB-regulated antiapoptotic genes was sustained in PU.1-depleted AML cells upon TRAIL treatment and DR5 levels were decreased. Last, PU.1 deficiency significantly increased AML cell resistance to anthracycline treatment. Altogether, these results reveal a new facet of PU.1's tumor suppressor function during antileukemic therapies.


Assuntos
Regulação Leucêmica da Expressão Gênica , Proteínas Proto-Oncogênicas/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/genética , Transativadores/genética , Fator de Transcrição RelA/genética , Antraciclinas/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Células HL-60 , Humanos , Ligação Proteica , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/deficiência , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Transdução de Sinais , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Transativadores/antagonistas & inibidores , Transativadores/deficiência , Fator de Transcrição RelA/metabolismo
16.
Wound Repair Regen ; 24(6): 1004-1014, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27663454

RESUMO

Mice engrafted with human CD34+ hematopoietic stem and progenitor cells (CD34+ -HSPCs) have been used to study human infection, diabetes, sepsis, and burn, suggesting that they could be highly amenable to characterizing the human inflammatory response to injury. To this end, human leukocytes infiltrating subcutaneous implants of polyvinyl alcohol (PVA) sponges were analyzed in immunodeficient NSG mice reconstituted with CD34+ -HSPCs. It was reported that human CD45+ (hCD45+ ) leukocytes were present in PVA sponges 3 and 7 days postimplantation and could be localized within the sponges by immunohistochemistry. The different CD45+ subtypes were characterized by flow cytometry and the profile of human cytokines they secreted into PVA wound fluid was assessed using a human-specific multiplex bead analyses of human IL-12p70, TNFα, IL-10, IL-6, IL1ß, and IL-8. This enabled tracking the functional contributions of HLA-DR+ , CD33+ , CD19+ , CD62L+ , CD11b+ , or CX3CR1+ hCD45+ infiltrating inflammatory leukocytes. PCR of cDNA prepared from these cells enabled the assessment and differentiation of human, mouse, and uniquely human genes. These findings support the hypothesis that mice engrafted with CD34+ -HSPCs can be deployed as precision avatars to study the human inflammatory response to injury.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Inflamação/imunologia , Inflamação/patologia , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/patologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Células Supressoras Mieloides/metabolismo , Transdução de Sinais , Cicatrização/imunologia , Ferimentos e Lesões/imunologia , Ferimentos e Lesões/metabolismo , Ferimentos e Lesões/patologia
17.
Thromb Res ; 140 Suppl 1: S27-36, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27067975

RESUMO

Metastasis is the main cause of death in cancer patients, and understanding mechanisms that control tumor cell dissemination may lead to improved therapy. Tumor cell adhesion receptors contribute to cancer spreading. We noted earlier that tumor cells can expressing the adhesion receptor integrin αvß3 in distinct states of activation, and found that cells which metastasize from the blood stream express it in a constitutively high affinity form. Here, we analyzed steps of the metastatic cascade in vivo and asked, when and how the affinity state of integrin αvß3 confers a critical advantage to cancer spreading. Following tumor cells by real time PCR, non-invasive bioluminescence imaging, intravital microscopy and histology allowed us to identify tumor cell extravasation from the blood stream as a rate-limiting step supported by high affinity αvß3. Successful transendothelial migration depended on cooperation between tumor cells and platelets involving the high affinity tumor cell integrin and release of platelet granules. Thus, this study identifies the high affinity conformer of integrin αvß3 and its interaction with platelets as critical for early steps during hematogenous metastasis and target for prevention of metastatic disease.


Assuntos
Plaquetas/patologia , Integrina alfaVbeta3/metabolismo , Metástase Neoplásica/patologia , Células Neoplásicas Circulantes/patologia , Animais , Plaquetas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Humanos , Integrina alfaVbeta3/análise , Camundongos SCID , Células Neoplásicas Circulantes/metabolismo
18.
Leuk Res ; 41: 96-102, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26740055

RESUMO

The RNA binding proteins RBM binding motif protein 38 (RBM38) and DEAD END 1 (DND1) selectively stabilize mRNAs by attenuating RNAse activity or protecting them from micro(mi)RNA-mediated cleavage. Furthermore, both proteins can efficiently stabilize the mRNA of the cell cycle inhibitor p21(CIP1). Since acute myeloid leukemia (AML) differentiation requires cell cycle arrest and RBM38 as well as DND1 have antiproliferative functions, we hypothesized that decreased RBM38 and DND1 expression may contribute to the differentiation block seen in this disease. We first quantified RBM38 and DND1 mRNA expression in clinical AML patient samples and CD34(+) progenitor cells and mature granulocytes from healthy donors. We found significantly lower RBM38 and DND1 mRNA levels in AML blasts and CD34(+) progenitor cells as compared to mature neutrophils from healthy donors. Furthermore, the lowest expression of both RBM38 and DND1 mRNA correlated with t(8;21). In addition, neutrophil differentiation of CD34(+) cells in vitro with G-CSF (granulocyte colony stimulating factor) resulted in a significant increase of RBM38 and DND1 mRNA levels. Similarly, neutrophil differentiation of NB4 acute promyelocytic leukemia (APL) cells was associated with a significant induction of RBM38 and DND1 expression. To address the function of RBM38 and DND1 in neutrophil differentiation, we generated two independent NB4RBM38 as well as DND1 knockdown cell lines. Inhibition of both RBM38 and DND1 mRNA significantly attenuated NB4 differentiation and resulted in decreased p21(CIP1) mRNA expression. Our results clearly indicate that expression of the RNA binding proteins RBM38 and DND1 is repressed in primary AML patients, that neutrophil differentiation is dependent on increased expression of both proteins, and that these proteins have a critical role in regulating p21(CIP1) expression during APL differentiation.


Assuntos
Regulação Leucêmica da Expressão Gênica/fisiologia , Leucemia Mieloide Aguda/patologia , Leucemia Promielocítica Aguda/patologia , Proteínas de Neoplasias/biossíntese , Neutrófilos/patologia , Proteínas de Ligação a RNA/biossíntese , Adolescente , Adulto , Idoso , Western Blotting , Diferenciação Celular , Feminino , Técnicas de Silenciamento de Genes , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Adulto Jovem
19.
Ann Surg ; 263(1): 199-204, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25575256

RESUMO

OBJECTIVE: To develop an animal model of injury that more closely represents the human inflammatory cell response to injury. BACKGROUND: Because the mouse inflammatory response to burn injury cannot account for the contribution of human-specific genes, animal models are needed to more closely recapitulate the human inflammatory response and improve the translational impact of injury research. To this end, we hypothesized that the human inflammatory cell response to injury could be selectively assessed after severe burn injury using humanized mice. METHODS: NOD-Scid-IL2Rγ null mice were transplanted with human hematopoietic CD34+ progenitor cells; their engraftment confirmed and then subjected to 30% total body surface area steam burn injury. Blood, bone marrow, and lung tissue were collected 4 hours after injury and human inflammatory cell mobilization analyzed using flow cytometry and immunohistochemistry. RESULTS: Burn injury caused mobilization of human inflammatory cells into the systemic circulation. Next, burn injury was accompanied by evidence of histologic lung injury and concomitant mobilization of human CD45+ immune cells into the lung that were associated with increased trafficking of human CD11b+ myeloid cells. CONCLUSIONS: These experiments are the first to demonstrate the suitability of humanized mice for injury research. They offer the possibility to address very specific research questions that are not amenable to traditional mouse models of injury, for example, the emerging role of certain human-specific genes that are either unrepresented or totally absent, from the mouse genome.


Assuntos
Queimaduras/imunologia , Modelos Animais de Doenças , Transplante de Células-Tronco Hematopoéticas , Animais , Humanos , Camundongos
20.
Mol Ther Nucleic Acids ; 4: e268, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26670276

RESUMO

The chemokine (C-C motif) receptor 5 (CCR5) serves as an HIV-1 co-receptor and is essential for cell infection with CCR5-tropic viruses. Loss of functional receptor protects against HIV infection. Here, we report the successful targeting of CCR5 in GFP-marked human induced pluripotent stem cells (iPSCs) using CRISPR/Cas9 with single and dual guide RNAs (gRNAs). Following CRISPER/Cas9-mediated gene editing using a single gRNA, 12.5% of cell colonies demonstrated CCR5 editing, of which 22.2% showed biallelic editing as determined by a Surveyor nuclease assay and direct sequencing. The use of dual gRNAs significantly increased the efficacy of CCR5 editing to 27% with a biallelic gene alteration frequency of 41%. To ensure the homogeneity of gene editing within cells, we used single cell sorting to establish clonal iPSC lines. Single cell-derived iPSC lines with homozygous CCR5 mutations displayed the typical characteristics of pluripotent stem cells and differentiated efficiently into hematopoietic cells, including macrophages. Although macrophages from both wild-type and CCR5-edited iPSCs supported CXCR4-tropic virus replication, macrophages from CCR5-edited iPSCs were uniquely resistant to CCR5-tropic virus challenge. This study demonstrates the feasibility of applying iPSC technology for the study of the role of CCR5 in HIV infection in vitro, and generation of HIV-resistant cells for potential therapeutic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA