Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 23(8): 4636-4645, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33527107

RESUMO

Superoxide reductases (SORs) are mononuclear non-heme iron enzymes involved in superoxide radical detoxification in some microorganisms. Their atypical active site is made of an iron atom pentacoordinated by four equatorial nitrogen atoms from histidine residues and one axial sulfur atom from a cysteinate residue, which plays a central role in catalysis. In most SORs, the residue immediately following the cysteinate ligand is an asparagine, which belongs to the second coordination sphere and is expected to have a critical influence on the properties of the active site. In this work, in order to investigate the role of this asparagine residue in the Desulfoarculus baarsii enzyme (Asn117), we carried out, in comparison with the wild-type enzyme, absorption and resonance Raman (RR) studies on a SOR mutant in which Asn117 was changed into an alanine. RR analysis was developed in order to assign the different bands using excitation in the (Cys116)-S-→ Fe3+ charge transfer band. By investigating the correlation between the (Cys116)-S-→ Fe3+ charge transfer band maximum with the frequency of each RR band in different SOR forms, we assessed the contribution of the ν(Fe-S) vibration among the different RR bands. The data showed that Asn117, by making hydrogen bond interactions with Lys74 and Tyr76, allows a rigidification of the backbone of the Cys116 ligand, as well as that of the neighboring residues Ile118 and His119. Such a structural role of Asn117 has a deep impact on the S-Fe bond. It results in a tight control of the H-bond distance between the Ile118 and His119 NH peptidic moiety with the cysteine sulfur ligand, which in turn enables fine-tuning of the S-Fe bond strength, an essential property for the SOR active site. This study illustrates the intricate roles of second coordination sphere residues to adjust the ligand to metal bond properties in the active site of metalloenzymes.


Assuntos
Proteínas de Bactérias/química , Cisteína/química , Ferro/química , Oxirredutases/química , Sequência de Aminoácidos , Catálise , Domínio Catalítico , Ligação de Hidrogênio , Ligantes , Mutagênese Sítio-Dirigida , Conformação Proteica , Espectrofotometria Ultravioleta , Análise Espectral Raman , Enxofre/química
2.
Nucleic Acids Res ; 48(17): 9918-9930, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32785618

RESUMO

MiaE (2-methylthio-N6-isopentenyl-adenosine37-tRNA monooxygenase) is a unique non-heme diiron enzyme that catalyzes the O2-dependent post-transcriptional allylic hydroxylation of a hypermodified nucleotide 2-methylthio-N6-isopentenyl-adenosine (ms2i6A37) at position 37 of selected tRNA molecules to produce 2-methylthio-N6-4-hydroxyisopentenyl-adenosine (ms2io6A37). Here, we report the in vivo activity, biochemical, spectroscopic characterization and X-ray crystal structure of MiaE from Pseudomonas putida. The investigation demonstrates that the putative pp-2188 gene encodes a MiaE enzyme. The structure shows that Pp-MiaE consists of a catalytic diiron(III) domain with a four alpha-helix bundle fold. A docking model of Pp-MiaE in complex with tRNA, combined with site directed mutagenesis and in vivo activity shed light on the importance of an additional linker region for substrate tRNA recognition. Finally, krypton-pressurized Pp-MiaE experiments, revealed the presence of defined O2 site along a conserved hydrophobic tunnel leading to the diiron active center.


Assuntos
Proteínas de Bactérias/química , Domínio Catalítico , Oxigenases de Função Mista/química , Pseudomonas putida/enzimologia , RNA de Transferência/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , RNA de Transferência/química
3.
Proc Natl Acad Sci U S A ; 117(32): 19168-19177, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32719135

RESUMO

The emergence of superbugs developing resistance to antibiotics and the resurgence of microbial infections have led scientists to start an antimicrobial arms race. In this context, we have previously identified an active RiPP, the Ruminococcin C1, naturally produced by Ruminococcus gnavus E1, a symbiont of the healthy human intestinal microbiota. This RiPP, subclassified as a sactipeptide, requires the host digestive system to become active against pathogenic Clostridia and multidrug-resistant strains. Here we report its unique compact structure on the basis of four intramolecular thioether bridges with reversed stereochemistry introduced posttranslationally by a specific radical-SAM sactisynthase. This structure confers to the Ruminococcin C1 important clinical properties including stability to digestive conditions and physicochemical treatments, a higher affinity for bacteria than simulated intestinal epithelium, a valuable activity at therapeutic doses on a range of clinical pathogens, mediated by energy resources disruption, and finally safety for human gut tissues.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Clostridiales/química , Peptídeos/química , Peptídeos/farmacologia , Antibacterianos/isolamento & purificação , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Peptídeos/isolamento & purificação
4.
Inorg Chem ; 58(17): 11649-11655, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31436093

RESUMO

A new mixed-valent dicopper complex [5] was generated from ligand exchange by dissolving a bis(CH3CN) precursor [3] in acetone. Introduction of a water molecule in place of an acetonitrile ligand was evidenced by base titration and the presence of a remaining coordinated CH3CN by IR, 19F NMR, and theoretical methods. The proposed structure (CH3CN-Cu-(SR)-Cu-OH2) was successfully DFT-optimized and the calculated parameters are in agreement with the experimental data. [5] has a unique temperature-dependence EPR behavior, with a localized valence from 10 to 120 K that undergoes delocalized at room temperature. The electrochemical signatures are in the line of the other aquo parent [2] and sensibly different from the rest of the series. Similar to the case of [2], [5] was finally capable of single turnover N2O reduction at room temperature. N2 was detected by GC-MS, and the redox character was confirmed by EPR and ESI-MS. Kinetic data indicate a reaction rate order close to 1 and a rate 10 times faster compared to [2]. [5] is thus the second example of that kind and highlights not only the main role of the Cu-OH2 motif, but also that the adjacent Cu-X partner (X = OTf- in [2] and CH3CN in [5]) is a new actor in the casting to establish structure/activity correlations.


Assuntos
Cobre/farmacologia , Inibidores Enzimáticos/farmacologia , Compostos Organometálicos/farmacologia , Oxirredutases/antagonistas & inibidores , Peptídeos/farmacologia , Cobre/química , Teoria da Densidade Funcional , Técnicas Eletroquímicas , Inibidores Enzimáticos/química , Estrutura Molecular , Compostos Organometálicos/química , Oxirredutases/metabolismo , Peptídeos/química
5.
Chem Sci ; 10(41): 9513-9529, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-32055323

RESUMO

High valent iron species are very reactive molecules involved in oxidation reactions of relevance to biology and chemical synthesis. Herein we describe iron(iv)-tosylimido complexes [FeIV(NTs)(MePy2tacn)](OTf)2 (1(IV)[double bond, length as m-dash]NTs) and [FeIV(NTs)(Me2(CHPy2)tacn)](OTf)2 (2(IV)[double bond, length as m-dash]NTs), (MePy2tacn = N-methyl-N,N-bis(2-picolyl)-1,4,7-triazacyclononane, and Me2(CHPy2)tacn = 1-(di(2-pyridyl)methyl)-4,7-dimethyl-1,4,7-triazacyclononane, Ts = Tosyl). 1(IV)[double bond, length as m-dash]NTs and 2(IV)[double bond, length as m-dash]NTs are rare examples of octahedral iron(iv)-imido complexes and are isoelectronic analogues of the recently described iron(iv)-oxo complexes [FeIV(O)(L)]2+ (L = MePy2tacn and Me2(CHPy2)tacn, respectively). 1(IV)[double bond, length as m-dash]NTs and 2(IV)[double bond, length as m-dash]NTs are metastable and have been spectroscopically characterized by HR-MS, UV-vis, 1H-NMR, resonance Raman, Mössbauer, and X-ray absorption (XAS) spectroscopy as well as by DFT computational methods. Ferric complexes [FeIII(HNTs)(L)]2+, 1(III)-NHTs (L = MePy2tacn) and 2(III)-NHTs (L = Me2(CHPy2)tacn) have been isolated after the decay of 1(IV)[double bond, length as m-dash]NTs and 2(IV)[double bond, length as m-dash]NTs in solution, spectroscopically characterized, and the molecular structure of [FeIII(HNTs)(MePy2tacn)](SbF6)2 determined by single crystal X-ray diffraction. Reaction of 1(IV)[double bond, length as m-dash]NTs and 2(IV)[double bond, length as m-dash]NTs with different p-substituted thioanisoles results in the transfer of the tosylimido moiety to the sulphur atom producing sulfilimine products. In these reactions, 1(IV)[double bond, length as m-dash]NTs and 2(IV)[double bond, length as m-dash]NTs behave as single electron oxidants and Hammett analyses of reaction rates evidence that tosylimido transfer is more sensitive than oxo transfer to charge effects. In addition, reaction of 1(IV)[double bond, length as m-dash]NTs and 2(IV)[double bond, length as m-dash]NTs with hydrocarbons containing weak C-H bonds results in the formation of 1(III)-NHTs and 2(III)-NHTs respectively, along with the oxidized substrate. Kinetic analyses indicate that reactions proceed via a mechanistically unusual HAT reaction, where an association complex precedes hydrogen abstraction.

6.
Biometals ; 19(4): 349-66, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16841245

RESUMO

The interest in synthetic siderophore mimics includes therapeutic applications (iron chelation therapy), the design of more effective agents to deliver Fe to plants and the development of new chemical tools in order to study iron metabolism and iron assimilation processes in living systems. The design of ligands needs a rational approach for the understanding of the metal ion complexing abilities. The octahedral arrangement of donor atoms is the most favourable geometry, allowing the maximum possible distance between their formal or partial negative charges. Hexadentate chelators, usually of the tris-bidentate type, can accommodate the metal coordination sphere and are well-suited to obtain high pFe values. The first part of this review is dedicated to selected synthetic routes, taking into account (i) the nature of the chelating subunits, connecting groups and spacers, (ii) the water-solubility and hydrophilic/lipophilic balance, (iii) the chirality and (iv) the possibility of grafting probes or vectors. In the second part, we discuss the role of the molecular design on complexing abilities (thermodynamics and kinetics). The bidentate 8-hydroxyquinoline moiety offers an alternative to the usual coordinating hydroxamic acids, catechols and/or alpha-hydroxycarboxylic acids groups encountered in natural siderophores. The promizing results obtained with the tris-hydroxyquinoline-based ligand O-TRENSOX are summarized. O-TRENSOX exhibits a high and selective affinity for Fe(III) complexation. Its efficiency in delivering Fe to plants, iron mobilization, cell protection, and antiproliferative effects has been evidenced. Other chelators derived from O-TRENSOX (mixed catechol/8-hydroxyquinoline ligands, lipophilic ligands) are also described. Some results question the relevance of partition coefficients to foresee the activity of iron chelators. The development of probes (fluorescent, radioactive, spin labelled) based on the O-TRENSOX backbone is in progress in order to get insights in the complicated iron metabolism processes.


Assuntos
Desenho de Fármacos , Quelantes de Ferro/química , Ferro/química , Interações Hidrofóbicas e Hidrofílicas , Quelantes de Ferro/síntese química , Ligantes , Estrutura Molecular , Sideróforos/química , Solubilidade , Termodinâmica
7.
Inorg Chem ; 41(15): 3983-9, 2002 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-12132925

RESUMO

A series of dicopper(II) complexes have been investigated as model systems for the catechol oxidase active site enzyme, regarding the binding of catechol substrate in the first step of the catalytic cycle. The [Cu(2)(L(R))(mu-OH)](ClO(4))(2) and [Cu(2)(L(R))(H(2)O)(2)](ClO(4))(3) complexes are based on the L(R) ligands (2,6-bis[(bis(2-pyridylmethyl)amino)methyl]-4-R-substituted phenol) with -R = -OCH(3), -CH(3), or -F. Binding studies of diphenol substrates were investigated using UV-vis and EPR spectroscopy, electrochemistry, and (19)F NMR (fluorinated derivatives). All the complexes are able to bind two ortho-diphenol substrates (tetrachlorocatechol and 3,5-di-tert-butylcatechol). Two successive fixation steps, respectively fast and slower, were evidenced for the mu-OH complexes (the bis(aqua) complexes are inactive in catalysis) by stopped-flow measurement and (19)F NMR. From the mu-OH species, the 1:1 complex/substrate adduct is the catalytically active form. In relation with the substrate specificity observed in the enzyme, different substrate/inhibitor combinations were also examined. These studies enabled us to propose that ortho-diphenol binds monodentately one copper(II) center with the concomitant cleavage of the OH bridge. This hydroxo ligand appears to be a key factor to achieve the complete deprotonation of the catechol, leading to a bridging catecholate.


Assuntos
Catecol Oxidase/química , Cobre/química , Compostos Organometálicos/síntese química , Sítios de Ligação , Catálise , Catecol Oxidase/metabolismo , Cristalografia por Raios X , Eletroquímica , Espectroscopia de Ressonância de Spin Eletrônica , Concentração de Íons de Hidrogênio , Ligantes , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Compostos Organometálicos/química , Oxirredução , Relação Estrutura-Atividade , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA