Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Microencapsul ; 40(6): 442-455, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37191893

RESUMO

OBJECTIVE: Encapsulation of esculetin into DSPE-MPEG2000 carrier was performed to improve its water solubility and oral bioavailability, as well as enhance its anti-inflammatory effect on a mouse model of ulcerative colitis that was induced with dextran sulphate sodium (DSS). METHODS: We determined the in-vitro and in-vivo high-performance liquid chromatographic (HPLC) analysis method of esculetin; Esculetin-loaded nanostructure lipid carrier (Esc-NLC) was prepared using a thin-film dispersion method, wherein a particle size analyser was used to measure the particle size (PS) and zeta potential (ZP) of the Esc-NLC, while a transmission electron microscope (TEM) was employed to observe its morphology. Also, HPLC was used to measure its drug loading (DL), encapsulation efficiency (EE) and the in-vitro release of the preparation, as well as investigate the pharmacokinetic parameters. In addition, its anti-colitis effect was evaluated via histopathological examination of HE-stained sections and detection of the concentrations of tumour necrosis factor-alpha (TNF-α), interleukin (IL)-1 beta (ß), and IL-6 in serum with ELISA kits. RESULTS: The PS of Esc-NLC was 102.29 ± 0.63 nm with relative standard deviation (RSD) of 1.08% (with poly-dispersity index-PDI of 0.197 ± 0.023), while the ZP was -15.67 ± 1.39 mV with RSD of 1.24%. Solubility of esculetin was improved coupled with prolonged release time. Its pharmacokinetic parameters were compared with that of free esculetin, wherein the maximum concentration of the drug in plasma was increased by 5.5 times. Of note, bioavailability of the drug was increased by 1.7 times, while the half-life was prolonged by 2.4 times. In the anti-colitis efficacy experiment, the mice in Esc and Esc-NLC groups exhibited significantly reduced levels of TNF-α, IL-1ß, and IL-6 in their sera comparable to the DSS group. Colon histopathological examination revealed that mice with ulcerative colitis in both Esc and Esc-NLC groups displayed improved inflammation, amid the Esc-NLC groups having the best prophylactic treatment effect. CONCLUSION: Esc-NLC could ameliorate DSS-induced ulcerative colitis by improving bioavailability, prolonging drug release time and regulating cytokine release. This observation confirmed the potential of Esc-NLC to reduce inflammation in ulcerative colitis, albeit the need for follow-up research to verify the application of this strategy to clinical treatment of ulcerative colitis.


Assuntos
Colite Ulcerativa , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Interleucina-6 , Fator de Necrose Tumoral alfa , Inflamação , Excipientes , Lipídeos
2.
Drug Dev Ind Pharm ; 48(11): 623-634, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36420780

RESUMO

PURPOSE: To prepare polyethylene glycol succinate-vitamin E modified pinocembrin (PCB)-loaded liposomes (PCBT-liposomes) and evaluate PCBT-liposomal pharmacokinetics and antihyperglycemic activity. SIGNIFICANCE: The novel PCBT-liposomes demonstrated a promising application prospect as a nano drug carrier for future research. METHODS: Thin film dispersion was used to prepare PCBT-liposomes. We measured a series of characterization, followed by in vitro cumulative release, in vivo pharmacokinetic study, and antihyperglycemic activity evaluation. RESULTS: PCBT-liposomes displayed spherical and bilayered nanoparticles with mean particle size (roughly 92 nm), negative zeta potential (about -26.650 mV), high drug encapsulation efficiency (87.32 ± 1.34%) and good storage (at 4 or 25 °C) stability during 48 h after hydration. The cumulative release rate of PCBT-liposomes was markedly higher than free PCB in four different pH media. In vivo investigation showed that PCBT-liposomes could obviously improve oral bioavailability of PCB by 1.96 times, whereas the Cmax, MRT0-t, and T1/2 of PCBT-liposomes were roughly 1.700 ± 0.139 µg·mL-1, 12.695 ± 1.647 h, and 14.244 h, respectively. In terms of biochemical analysis, aspartate amino-transferase (AST), alanine amino-transferase (ALT), interleukin-1 (IL-1), and tumor necrosis factor-α (TNF-α) concentrations in serum of diabetic mice were respectively decreased 28.28%, 17.23%, 17.77%, and 8.08% after PCBT-liposomal treatment. CONCLUSION: These results show PCBT-liposomal preparation as an excellent nano-carrier which has the potential to improve water solubility, bioavailability, and antihyperglycemic activity of PCB, amid broadening the application of PCB in the clinical settings.


Assuntos
Diabetes Mellitus Experimental , Lipossomos , Camundongos , Animais , Lipossomos/química , Disponibilidade Biológica , Hipoglicemiantes/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Polietilenoglicóis/química , Tamanho da Partícula
3.
AAPS PharmSciTech ; 23(7): 276, 2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36207561

RESUMO

Pinocembrin (PCB) is 5,7-dihydroxyl flavanone and has multiple pharmacological activities, namely, anti-inflammation, anti-osteoporotic, and so on. However, low water solubility and bioavailability have hindered its application. Herein, we aimed to increase its bioavailability through preparation of F127/MPEG-PDLLA polymer micelles (PCB-M). We characterized the micelles through appropriate attributes such as analysis of particle size (PS), polydispersity (PDI), transmission electron microscopic (TEM) image, stability test, and evaluation of in vitro release of drug. After physical characterization, the respective PS, PDI, and entrapment efficiency (EE) of PCB-M were estimated to be 27.63 ± 0.17 nm, 0.055 ± 0.02, and 90.53 ± 0.01%. Fluorescence probe method was employed to measure critical micelle concentration (CMC) of PCB-M, we observed CMC was low, thereby suggesting that PCB-M had good stability. In vitro release analysis indicated that the rate of cumulative PCB release from PCB-M was greater than 90% in each medium compared with free PCB, which was less than 40%, thus pointing to a significantly improved solubility of PCB. In vivo pharmacokinetic results showed that oral biological availability of PCB-M increased 5.3 folds comparable to free PCB. The effects of PCB on osteoblasts and ALP activities were investigated; subsequently, zebrafish osteoporotic model was established with prednisolone to study the anti-osteoporotic effects of PCB and PCB-M. The results showed that PCB improved osteoporosis with PCB-M being more effective than free PCB. Finally, PCB-M can be used as a promising method to improve the solubility of PCB, while the bioavailability and anti-osteoporotic effect of PCB could be improved, thus laying a foundation for clinical use in the future.


Assuntos
Flavanonas , Micelas , Animais , Portadores de Fármacos , Sistemas de Liberação de Medicamentos/métodos , Flavanonas/farmacologia , Tamanho da Partícula , Polietilenoglicóis , Polietilenos , Polímeros , Polipropilenos , Prednisolona , Solubilidade , Água , Peixe-Zebra
4.
J Pharm Sci ; 111(7): 2083-2092, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35367247

RESUMO

The pharmacological activities of liquiritin (LT) are greatly limited by its insolubility and low oral absorption. The purpose of this study was to prepare LT-hydroxypropyl-beta-cyclodextrin inclusion complex (LT-HP-ß-CD) to increase water solubility, oral bioavailability and antitumor effect of LT. Herein, saturated aqueous solution method was applied to prepare the LT-HP-ß-CD prior to characterization via scanning electron microscope (SEM), infrared radiation (IR) spectroscopy, X-ray diffraction analysis (XRD), and differential scanning calorimetry (DSC). Also, in vitro release and in vivo pharmacokinetics were evaluated. Moreover, the anti-tumor activity of the formulation was investigated in the A549 lung cancer cells. The results of SEM, IR, XRD and DSC showed that LT-HP-ß-CD was successfully formulated. In vitro release and oral bioavailability of LT-HP-ß-CD compared with the free LT was significantly higher. Successfully, antitumor effect of LT was remarkably enhanced by the preparation of LT-HP-ß-CD. Altogether, the LT-HP-ß-CD represents a potential carrier for enhancing the water solubility and oral bioavailability of LT coupled with antitumor activity enhancement.


Assuntos
beta-Ciclodextrinas , 2-Hidroxipropil-beta-Ciclodextrina/química , Disponibilidade Biológica , Varredura Diferencial de Calorimetria , Flavanonas , Glucosídeos , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Água , Difração de Raios X , beta-Ciclodextrinas/química
5.
Drug Dev Ind Pharm ; 47(2): 308-318, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33494627

RESUMO

OBJECTIVES: Liquiritin, as one of the main flavonoids in Glycyrrhiza, exhibits extensive pharmacological effects, such as the anti-oxidant, anti-inflammatory, anti-tumor and so on. Herein, the aqueous solubility and oral bioavailability of liquiritin was purposely enhanced via the preparation of the mixed micelles. METHODS: The liquiritin-loaded micelles (LLM) were fabricated via thin-film dispersion method. The optimal LLM formulation was evaluated through physical properties including particle size (PS), encapsulation efficiency (EE) and drug loading (DL). In vitro accumulate release as well as in vivo pharmacokinetics were also evaluated. Moreover, the hypolipidemic activity of LLM was observed in the hyperlipidemia mice model. RESULTS: The LLM exhibited a homogenous spherical shape with small mean PS, good stability and high encapsulation efficiency. The accumulate release rates in vitro of the LLM were obviously higher than free liquiritin. The oral bioavailability of the formulation was heightened by 3.98 times in comparison with the free liquiritin. More importantly, LLM increased the hypolipidemic and effect of alleviating lipid metabolism disorder in hepatocytes of liquiritin in hyperlipidemia mice model. CONCLUSIONS: Collectively, the improved solubility of liquiritin in water coupled with its enhanced oral bioavailability and concomitant hypolipidemic activity could be attributed to the incorporation of the drug into the mixed micelles.


Assuntos
Flavanonas/administração & dosagem , Glucosídeos/administração & dosagem , Micelas , Administração Oral , Animais , Disponibilidade Biológica , Portadores de Fármacos , Flavanonas/química , Flavanonas/farmacologia , Glucosídeos/química , Glucosídeos/farmacologia , Camundongos , Tamanho da Partícula , Solubilidade
6.
Int J Pharm ; 563: 53-62, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-30890449

RESUMO

Isoliquiritigenin (ISL) has a great variety of pharmacological effects especially liver cancer therapy, but its poor solubility, bioavailability and liver targeting have limited its clinical use. In order to solve the aforementioned shortcomings, the TPGS-modified proliposomes loaded with ISL (ISL-TPGS-PLP) was prepared in this study. ISL-TPGS-PLP was fabricated via thin-film dispersion method and was characterized by the appearance, particle size, zeta potential and morphology. HPLC was used to evaluate entrapment efficiency (EE), in vitro release and stability of ISL-TPGS-PLP single or combined while appropriate physicochemical parameters were measured with DLS. Meanwhile, the pharmacokinetics and tissue distribution were also studied after oral administration. The results demonstrated that ISL-TPGS-PLP had a mean size of 23.8 ±â€¯0.9 nm, high EE of 97.33 ±â€¯0.40%. More importantly, nearly 90% ISL was released from ISL-TPGS-PLP within 24 h while only 50% was released from ISL suspension. In the pharmacokinetics study, the area under the curve (AUC0-24h) of ISL-TPGS-PLP was 1.53 times higher than that of ISL suspension. The Tissue distribution study showed that the ISL released from ISL-TPGS-PLP was higher in the liver than the free ISL suspension. Altogether, ISL-TPGS-PLP could ameliorate the ISL solubility, bioavailability and liver targeting ability, suggesting that ISL-TPGS-PLP could serve as a promising nanocarrier for liver cancer therapy.


Assuntos
Chalconas , Vitamina E , Administração Oral , Animais , Chalconas/administração & dosagem , Chalconas/química , Chalconas/farmacocinética , Composição de Medicamentos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Lipossomos , Fígado/metabolismo , Camundongos Endogâmicos ICR , Tamanho da Partícula , Ratos Sprague-Dawley , Solubilidade , Distribuição Tecidual , Vitamina E/administração & dosagem , Vitamina E/química , Vitamina E/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA