Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Front Med (Lausanne) ; 10: 1269689, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37904839

RESUMO

Background: Clinical attempts to find benefit from specifically targeting and boosting resistant hypoxic tumor subvolumes have been promising but inconclusive. While a first preclinical murine tumor type showed significant improved control with hypoxic tumor boosts, a more thorough investigation of efficacy from boosting hypoxic subvolumes defined by electron paramagnetic resonance oxygen imaging (EPROI) is necessary. The present study confirms improved hypoxic tumor control results in three different tumor types using a clonogenic assay and explores potential confounding experimental conditions. Materials and methods: Three murine tumor models were used for multi-modal imaging and radiotherapy: MCa-4 mammary adenocarcinomas, SCC7 squamous cell carcinomas, and FSa fibrosarcomas. Registered T2-weighted MRI tumor boundaries, hypoxia defined by EPROI as pO2 ≤ 10 mmHg, and X-RAD 225Cx CT boost boundaries were obtained for all animals. 13 Gy boosts were directed to hypoxic or equal-integral-volume oxygenated tumor regions and monitored for regrowth. Kaplan-Meier survival analysis was used to assess local tumor control probability (LTCP). The Cox proportional hazards model was used to assess the hazard ratio of tumor progression of Hypoxic Boost vs. Oxygenated Boost for each tumor type controlling for experimental confounding variables such as EPROI radiofrequency, tumor volume, hypoxic fraction, and delay between imaging and radiation treatment. Results: An overall significant increase in LTCP from Hypoxia Boost vs. Oxygenated Boost treatments was observed in the full group of three tumor types (p < 0.0001). The effects of tumor volume and hypoxic fraction on LTCP were dependent on tumor type. The delay between imaging and boost treatments did not have a significant effect on LTCP for all tumor types. Conclusion: This study confirms that EPROI locates resistant tumor hypoxic regions for radiation boost, increasing clonogenic LTCP, with potential enhanced therapeutic index in three tumor types. Preclinical absolute EPROI may provide correction for clinical hypoxia images using additional clinical physiologic MRI.

3.
Molecules ; 26(1)2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383640

RESUMO

Pulsed Dipolar Spectroscopy (PDS) methods of Electron Paramagnetic Resonance (EPR) were used to detect and characterize reversible non-covalent dimers of Human Serum Albumin (HSA), the most abundant protein in human plasma. The spin labels, MTSL and OX063, were attached to Cys-34 and these chemical modifications of Cys-34 did affect the dimerization of HSA, indicating that other post-translational modifications can modulate dimer formation. At physiologically relevant concentrations, HSA does form weak, non-covalent dimers with a well-defined structure. Dimer formation is readily reversible into monomers. Dimerization is very relevant to the role of HSA in the transport, binding, and other physiological processes.


Assuntos
Albumina Sérica Humana/química , Cisteína/química , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Multimerização Proteica , Marcadores de Spin
4.
Free Radic Biol Med ; 130: 120-127, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30416100

RESUMO

Molecular oxygen, reactive oxygen species and free radicals derived from oxygen play important roles in a broad spectrum of physiological and pathological processes. The quantitative measurement of molecular oxygen in tissues by electron paramagnetic resonance (EPR) has great potential for understanding and diagnosing a number of diseases, and for developing and guiding therapies. This requires improvements in the free radical probe systems that sense and report molecular oxygen levels in vivo. We report on the encapsulation of existing free radical probes in lipophilic gel implants: an in-situ-oleogel and an emulgel, based only on well-known, safe excipients for the incorporation of lipophilic and hydrophilic radicals, respectively. The EPR signals of encapsulated radicals were not altered compared to dissolved radicals. The high solubility of oxygen in lipophilic solvents enhanced oxygen sensitivity. The gels extended the lifetime of the radicals in tissues from tens of minutes to many days, simplifying studies with extended series of measurements. The encapsulated radicals showed a good in vivo response to changes in oxygen supply and seem to circumvent concerns from toxicity of the radical probes. These gels simplify the development of new oxygen-sensitive free radical probes for EPR oximetry by making their in vivo stability, persistence and toxicity a function of the encapsulating gel and not a set of additional requirements for the free radical probe.


Assuntos
Radicais Livres/química , Músculos/química , Oximetria/métodos , Oxigênio/análise , Compostos de Tritil/química , Animais , Respiração Celular , Células Cultivadas , Espectroscopia de Ressonância de Spin Eletrônica , Feminino , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Camundongos Endogâmicos C3H , Compostos Orgânicos/química , Espécies Reativas de Oxigênio/metabolismo
5.
Int J Radiat Oncol Biol Phys ; 103(4): 977-984, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30414912

RESUMO

PURPOSE: It has been known for over 100 years that tumor hypoxia, a near-universal characteristic of solid tumors, decreases the curative effectiveness of radiation therapy. However, to date, there are no reports that demonstrate an improvement in radiation effectiveness in a mammalian tumor on the basis of tumor hypoxia localization and local hypoxia treatment. METHODS AND MATERIALS: For radiation targeting of hypoxic subregions in mouse fibrosarcoma, we used oxygen images obtained using pulse electron paramagnetic resonance pO2 imaging combined with 3D-printed radiation blocks. This achieved conformal radiation delivery to all hypoxic areas in FSa fibrosarcomas in mice. RESULTS: We demonstrate that treatment delivering a radiation boost to hypoxic volumes has a significant (P = .04) doubling of tumor control relative to boosts to well-oxygenated volumes. Additional dose to well-oxygenated tumor regions minimally increases tumor control beyond the 15% control dose to the entire tumor. If we can identify portions of the tumor that are more resistant to radiation, it might be possible to reduce the dose to more sensitive tumor volumes without significant compromise in tumor control. CONCLUSIONS: This work demonstrates in a single, intact mammalian tumor type that tumor hypoxia is a local tumor phenomenon whose treatment can be enhanced by local radiation. Despite enormous clinical effort to overcome hypoxic radiation resistance, to our knowledge this is the first such demonstration, even in preclinical models, of targeting additional radiation to hypoxic tumor to improve the therapeutic ratio.


Assuntos
Oxigênio/metabolismo , Radioterapia Guiada por Imagem/métodos , Animais , Linhagem Celular Tumoral , Espectroscopia de Ressonância de Spin Eletrônica , Estimativa de Kaplan-Meier , Camundongos , Hipóxia Tumoral/efeitos da radiação
6.
Cell Biochem Biophys ; 75(3-4): 295-298, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28986856

RESUMO

Radiation treatment success and high tumor oxygenation and success have been known to be highly correlated. This suggests that radiation therapy guided by images of tumor regions with low oxygenation, oxygen-guided radiation therapy (OGRT) may be a promising enhancement of cancer radiation treatment. Before applying the technique to human subjects, OGRT needs to be tested in animals, most easily in rodents. Electron paramagnetic resonance imaging provides quantitative maps of tissue and tumor oxygen in rodents with 1 mm spatial resolution and 1 torr pO2 resolution at low oxygen levels. The difficulty of using mouse models is their small size and that of their tumors. To overcome this we used XRAD225Cx micro-CT/ therapy system and 3D printed conformal blocks. Radiation is delivered first to a uniform 15% tumor control dose for the whole tumor and then a boost dose to either hypoxic tumor regions or equal volumes of well oxygenated tumor. Delivery of the booster dose used a multiple beam angles to deliver radiation beams whose shape conforms to that of all hypoxic regions or fully avoids those regions. To treat/avoid all hypoxic regions we used individual radiation blocks 3D-printed from acrylonitrile butadiene styrene polymer infused with tungsten particles fabricated immediately after imaging to determine regions with pO2 less than 10 torr. Preliminary results demonstrate the efficacy of the radiation treatment with hypoxic boosts with syngeneic FSa fibrosarcoma tumors in the legs of C3H mice.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica , Oxigênio/química , Animais , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/radioterapia , Fibrossarcoma/diagnóstico por imagem , Fibrossarcoma/radioterapia , Raios gama/uso terapêutico , Hipóxia , Imageamento por Ressonância Magnética , Camundongos , Modelos Biológicos , Impressão Tridimensional , Marcadores de Spin , Microtomografia por Raio-X
7.
J Magn Reson ; 269: 50-54, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27214582

RESUMO

Site-directed spin labeling (SDSL) in combination with electron paramagnetic resonance (EPR) spectroscopy has become an important tool for measuring distances in proteins on the order of a few nm. For this purpose pairs of spin labels, most commonly nitroxides, are site-selectively introduced into the protein. Recent efforts to develop new spin labels are focused on tailoring the intrinsic properties of the label to either extend the upper limit of measurable distances at physiological temperature, or to provide a unique spectral lineshape so that selective pairwise distances can be measured in a protein or complex containing multiple spin label species. Triarylmethyl (TAM) radicals are the foundation for a new class of spin labels that promise to provide both capabilities. Here we report a new methanethiosulfonate derivative of a TAM radical that reacts rapidly and selectively with an engineered cysteine residue to generate a TAM containing side chain (TAM1) in high yield. With a TAM1 residue and Cu(2+) bound to an engineered Cu(2+) binding site, enhanced T1 relaxation of TAM should enable measurement of interspin distances up to 50Å at physiological temperature. To achieve favorable TAM1-labeled protein concentrations without aggregation, proteins are tethered to a solid support either site-selectively using an unnatural amino acid or via native lysine residues. The methodology is general and readily extendable to complex systems, including membrane proteins.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica , Proteínas/química , Marcadores de Spin , Sítios de Ligação , Temperatura
8.
Adv Exp Med Biol ; 876: 185-193, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26782211

RESUMO

The outcome of cancer radiation treatment is strongly correlated with tumor oxygenation. The aim of this study is to use oxygen tension distributions in tumors obtained using Electron Paramagnetic Resonance (EPR) imaging to devise better tumor radiation treatment. The proposed radiation plan is delivered in two steps. In the first step, a uniform 50% tumor control dose (TCD50) is delivered to the whole tumor. For the second step an additional dose boost is delivered to radioresistant, hypoxic tumor regions. FSa fibrosarcomas grown in the gastrocnemius of the legs of C3H mice were used. Oxygen tension images were obtained using a 250 MHz pulse imager and injectable partially deuterated trityl OX63 (OX71) spin probe. Radiation was delivered with a novel animal intensity modulated radiation therapy (IMRT) XRAD225Cx microCT/radiation therapy delivery system. In a simplified scheme for boost dose delivery, the boost area is approximated by a sphere, whose radius and position are determined using an EPR O2 image. The sphere that irradiates the largest fraction of hypoxic voxels in the tumor was chosen using an algorithm based on Receiver Operator Characteristic (ROC) analysis. We used the fraction of irradiated hypoxic volume as the true positive determinant and the fraction of irradiated normoxic volume as the false positive determinant in the terms of that analysis. The most efficient treatment is the one that demonstrates the shortest distance from the ROC curve to the upper left corner of the ROC plot. The boost dose corresponds to the difference between TCD90 and TCD50 values. For the control experiment an identical radiation dose to the normoxic tumor area is delivered.


Assuntos
Neoplasias Experimentais/radioterapia , Oxigênio/metabolismo , Radioterapia de Intensidade Modulada/métodos , Animais , Tomografia Computadorizada de Feixe Cônico , Espectroscopia de Ressonância de Spin Eletrônica , Camundongos , Camundongos Endogâmicos C3H , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/metabolismo , Curva ROC , Dosagem Radioterapêutica
9.
Adv Exp Med Biol ; 876: 363-369, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26782233

RESUMO

Electron paramagnetic resonance imaging (EPRI) has been used to noninvasively provide 3D images of absolute oxygen concentration (pO2) in small animals. These oxygen images are well resolved both spatially (~1 mm) and in pO2 (1-3 mmHg). EPRI preclinical images of pO2 have demonstrated extremely promising results for various applications investigating oxygen related physiologic and biologic processes as well as the dependence of various disease states on pO2, such as the role of hypoxia in cancer. Recent developments have been made that help to progress EPRI towards the eventual goal of human application. For example, a bimodal crossed-wire surface coil has been developed. Very preliminary tests demonstrated a 20 dB isolation between transmit and receive for this coil, with an anticipated additional 20 dB achievable. This could potentially be used to image local pO2 in human subjects with superficial tumors with EPRI. Local excitation and detection will reduce the specific absorption rate limitations on images and eliminate any possible power deposition concerns. Additionally, a large 9 mT EPRI magnet has been constructed which can fit and provide static main and gradient fields for imaging local anatomy in an entire human. One potential obstacle that must be overcome in order to use EPRI to image humans is the approved use of the requisite EPRI spin probe imaging agent (trityl). While nontoxic, EPRI trityl spin probes have been injected intravenously when imaging small animals, and require relatively high total body injection doses that would not be suitable for human imaging applications. Work has been done demonstrating the alternative use of intratumoral (IT) injections, which can reduce the amount of trityl required for imaging by a factor of 2000- relative to a whole body intravenous injection. The development of a large magnet that can accommodate human subjects, the design of a surface coil for imaging of superficial pO2, and the reduction of required spin probe using IT injections all are crucial steps towards the eventual use of EPRI to image pO2 in human subjects. In the future this can help investigate the oxygenation status of superficial tumors (e.g., breast tumors). The ability to image pO2 in humans has many other potential applications to diseases such as peripheral vascular disease, heart disease, and stroke.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Oxigênio/análise , Animais , Humanos , Camundongos , Radioterapia de Intensidade Modulada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA