Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 96(11): 4580-4588, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38348822

RESUMO

This work reports the first electrochemical bioplatforms developed for the determination of the total contents of either target miRNA or methylated target miRNA. The bioplatforms are based on the hybridization of the target miRNA with a synthetic biotinylated DNA probe, the capture of the formed DNA/miRNA heterohybrids on the surface of magnetic microcarriers, and their recognition with an antibody selective to these heterohybrids or to the N6-methyladenosine (m6A) epimark. The determination of the total or methylated target miRNA was accomplished by labeling such secondary antibodies with the horseradish peroxidase (HRP) enzyme. In both cases, amperometric transduction was performed on the surface of disposable electrodes after capturing the resulting HRP-tagged magnetic bioconjugates. Because of their increasing relevance in colorectal cancer (CRC) diagnosis and prognosis, miRNA let-7a and m6A methylation were selected. The proposed electrochemical bioplatforms showed attractive analytical and operational characteristics for the determination of the total and m6A-methylated target miRNA in less than 75 min. These bioplatforms, innovative in design and application, were applied to the analysis of total RNA samples extracted from cultured cancer cells with different metastatic profiles and from paired healthy and tumor tissues of patients diagnosed with CRC at different stages. The obtained results demonstrated, for the first time using electrochemical platforms, the potential of interrogating the target miRNA methylation level to discriminate the metastatic capacities of cancer cells and to identify tumor tissues and, in a pioneering way, the potential of the m6A methylation in miRNA let-7a to serve as a prognostic biomarker for CRC.


Assuntos
Técnicas Biossensoriais , Neoplasias Colorretais , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/análise , Epigenoma , Hibridização de Ácido Nucleico/métodos , Anticorpos/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Prognóstico , Técnicas Biossensoriais/métodos
2.
Cancers (Basel) ; 15(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37046764

RESUMO

Colorectal cancer (CRC) is the third most common cancer and the second most frequent cause of cancer-related death worldwide. The detection in plasma samples of autoantibodies against specific tumor-associated antigens has been demonstrated to be useful for the early diagnosis of CRC by liquid biopsy. However, new studies related to the humoral immune response in cancer are needed to enable blood-based diagnosis of the disease. Here, our aim was to characterize the humoral immune response associated with the different p53 and p63 proteoforms derived from alternative splicing and previously described as aberrantly expressed in CRC. Thus, here we investigated the diagnostic ability of the twelve p53 proteoforms and the eight p63 proteoforms described to date, and their specific N-terminal and C-terminal end peptides, by means of luminescence HaloTag beads immunoassays. Full-length proteoforms or specific peptides were cloned as HaloTag fusion proteins and their seroreactivity analyzed using plasma from CRC patients at stages I-IV (n = 31), individuals with premalignant lesions (n = 31), and healthy individuals (n = 48). p53γ, Δ40p53ß, Δ40p53γ, Δ133p53γ, Δ160p53γ, TAp63α, TAp63δ, ΔNp63α, and ΔNp63δ, together with the specific C-terminal end α and δ p63 peptides, were found to be more seroreactive against plasma from CRC patients and/or individuals with premalignant lesions than from healthy individuals. In addition, ROC (receiver operating characteristic) curves revealed a high diagnostic ability of those p53 and p63 proteoforms to detect CRC and premalignant individuals (AUC higher than 85%). Finally, electrochemical biosensing platforms were employed in POC-like devices to investigate their usefulness for CRC detection using selected p53 and p63 proteoforms. Our results demonstrate not only the potential of these biosensors for the simultaneous analysis of proteoforms' seroreactivity, but also their convenience and versatility for the clinical detection of CRC by liquid biopsy. In conclusion, we here show that p53 and p63 proteoforms possess differential seroreactivity in CRC patients in comparison to controls, distinctive from canonical proteins, which should improve the diagnostic panels for obtaining a blood-based biomarker signature for CRC detection.

3.
Anal Chim Acta ; 1182: 338946, 2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34602192

RESUMO

This work reports the first electrochemical bioplatform developed for the multidetection of 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) in DNA, DNA N6-methyladenine (6mA) and RNA N6-methyladenosine (m6A) methylations at global level. Direct competitive immunoassays were implemented on the surface of magnetic beads (MBs) and optimized for the single amperometric determination of different targets varying in length, sequence and number of methylations on screen-printed carbon electrodes. After evaluating the sensitivity and selectivity of such determinations and the confirmation of no cross-reactivity, a multiplexed disposable platform allowing the simultaneous determination of the mentioned four methylation events in only 45 min has been prepared. The multiplexed bioplatform was successfully applied to the determination of m6A in cellular total RNA and of 5-mC, 5-hmC and 6mA in genomic DNA extracted from tissues. The developed bioplatform showed its usefulness to discriminate the aggressiveness of cancerous cells and between healthy and tumor tissues of colorectal cancer patients.


Assuntos
Ácidos Nucleicos , Adenosina , Humanos , Fenômenos Magnéticos , Metilação , RNA
4.
Biosensors (Basel) ; 11(6)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205541

RESUMO

A magnetic beads (MB)-involved amperometric immunosensor for the determination of ST2, a member of the IL1 receptor family, is reported in this work. The method utilizes a sandwich immunoassay and disposable screen-printed carbon electrodes (SPCEs). Magnetic immunoconjugates built on the surface of carboxylic acid-microsized magnetic particles (HOOC-MBs) were used to selectively capture ST2. A biotinylated secondary antibody further conjugated with a streptavidin peroxidase conjugate (Strep-HRP) was used to accomplish the sandwiching of the target protein. The immune platform exhibits great selectivity and a low limit of detection (39.6 pg mL-1) for ST2, allowing the determination of soluble ST2 (sST2) in plasma samples from healthy individuals and patients diagnosed with pancreatic ductal adenocarcinoma (PDAC) in only 45 min once the immunoconjugates have been prepared. The good correlation of the obtained results with those provided by an ELISA kit performed using the same immunoreagents demonstrates the potential of the developed strategy for early diagnosis and/or prognosis of the fatal PDAC disease.


Assuntos
Técnicas Biossensoriais , Imunoensaio , Neoplasias/diagnóstico , Anticorpos , Carbono , Técnicas Eletroquímicas , Eletrodos , Ensaio de Imunoadsorção Enzimática , Humanos , Peróxido de Hidrogênio , Limite de Detecção , Magnetismo
5.
Biosens Bioelectron ; 171: 112708, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33049562

RESUMO

This work describes the preparation of an immunoplatform for the sensitive and selective determination of N6-methyladenosine (m6A). The simple and fast protocol involves for the first time the use of micromagnetic immunoconjugates to establish a direct competitive assay between the m6A target and a biotinylated RNA oligomer bearing a single m6A enzymatically labelled with a commercial conjugate of streptavidin-peroxidase (Strep-HRP) as tracer. The cathodic current change measured in the presence of H2O2/hydroquinone (HQ) at screen-printed carbon electrodes (SPCEs) upon surface capturing the magnetic bioconjugates is inversely proportional to the m6A target concentration. After evaluating the effect of key variables, the analytical characteristics were established for the determination of three different targets: the N6-methyladenosine-5'-triphosphate (m6ATP) ribonucleotide, a short synthetic RNA oligomer bearing a single m6A and the positive control provided in a commercial colorimetric kit for m6A-RNA quantification. The obtained results show that this immunoplatform is competitive with other methods reported to date, achieving an improved sensitivity (limit of detection of 0.9 pM for the short synthetic oligomer) using a much simpler and faster protocol (~1 h) and disposable electrodes for the transduction. Furthermore, the applicability for discriminating the metastatic potential of cancer cells by directly analyzing a small amount of raw total RNA without enriching or fragmenting was also preliminary assessed.


Assuntos
Técnicas Biossensoriais , Neoplasias , Adenosina/análogos & derivados , Peróxido de Hidrogênio , Limite de Detecção , Fenômenos Magnéticos , Microesferas
6.
Sci Rep ; 9(1): 11916, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31417117

RESUMO

Phenotypic drug discovery must take advantage of the large amount of clinical data currently available. In this sense, the impact of microRNAs (miRs) on human disease and clinical therapeutic responses is becoming increasingly well documented. Accordingly, it might be possible to use miR-based signatures as phenotypic read-outs of pathological status, for example in cancer. Here, we propose to use the information accumulating regarding the biology of miRs from clinical research in the preclinical arena, adapting it to the use of miR biosensors in the earliest steps of drug screening. Thus, we have used an amperometric dual magnetosensor capable of monitoring a miR-21/miR-205 signature to screen for new drugs that restore these miRs to non-tumorigenic levels in cell models of breast cancer and glioblastoma. In this way we have been able to identify a new chemical entity, 11PS04 ((3aR,7aS)-2-(3-propoxyphenyl)-7,7a-dihydro-3aH-pyrano[3,4-d]oxazol-6(4H)-one), the therapeutic potential of which was suggested in mechanistic assays of disease models, including 3D cell culture (oncospheres) and xenografts. These assays highlighted the potential of this compound to attack cancer stem cells, reducing the growth of breast and glioblastoma tumors in vivo. These data demonstrate the enhanced chain of translatability of this strategy, opening up new perspectives for drug-discovery pipelines and highlighting the potential of miR-based electro-analytical sensors as efficient tools in modern drug discovery.


Assuntos
Técnicas Biossensoriais , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/patologia , Oxazóis/farmacologia , Animais , Antineoplásicos/farmacologia , Carcinogênese/efeitos dos fármacos , Carcinogênese/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioma/patologia , Fenômenos Magnéticos , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/patologia , Camundongos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Oxazóis/química , Reprodutibilidade dos Testes , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Temozolomida/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Sci Rep ; 8(1): 6418, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29686400

RESUMO

This paper describes two different electrochemical affinity biosensing approaches for the simple, fast and bisulfite and PCR-free quantification of 5-methylated cytosines (5-mC) in DNA using the anti-5-mC antibody as biorecognition element. One of the biosensing approaches used the anti-5-mC as capture bioreceptor and a sandwich type immunoassay, while the other one involved the use of a specific DNA probe and the anti-5-mC as a detector bioreceptor of the captured methylated DNA. Both strategies, named for simplicity in the text as immunosensor and DNA sensor, respectively, were implemented on the surface of magnetic microparticles and the transduction was accomplished by amperometry at screen-printed carbon electrodes by means of the hydrogen peroxide/hydroquinone system. The resulting amperometric biosensors demonstrated reproducibility throughout the entire protocol, sensitive determination with no need for using amplification strategies, and competitiveness with the conventional enzyme-linked immunosorbent assay methodology and the few electrochemical biosensors reported so far in terms of simplicity, sensitivity and assay time. The DNA sensor exhibited higher sensitivity and allowed the detection of the gene-specific methylations conversely to the immunosensor, which detected global DNA methylation. In addition, the DNA sensor demonstrated successful applicability for 1 h-analysis of specific methylation in two relevant tumor suppressor genes in spiked biological fluids and in genomic DNA extracted from human glioblastoma cells.


Assuntos
Técnicas Biossensoriais , Metilação de DNA , Técnicas Eletroquímicas/instrumentação , Sulfatos/química , Líquidos Corporais/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Eletrodos , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Limite de Detecção , Proteínas Supressoras de Tumor/genética
8.
Sensors (Basel) ; 18(3)2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29543716

RESUMO

This work reports an amperometric biosensor for the determination of miRNA-21, a relevant oncogene. The methodology involves a competitive DNA-target miRNA hybridization assay performed on the surface of magnetic microbeads (MBs) and amperometric transduction at screen-printed carbon electrodes (SPCEs). The target miRNA competes with a synthetic fluorescein isothiocyanate (FITC)-modified miRNA with an identical sequence for hybridization with a biotinylated and complementary DNA probe (b-Cp) immobilized on the surface of streptavidin-modified MBs (b-Cp-MBs). Upon labeling, the FITC-modified miRNA attached to the MBs with horseradish peroxidase (HRP)-conjugated anti-FITC Fab fragments and magnetic capturing of the MBs onto the working electrode surface of SPCEs. The cathodic current measured at -0.20 V (versus the Ag pseudo-reference electrode) was demonstrated to be inversely proportional to the concentration of the target miRNA. This convenient biosensing method provided a linear range between 0.7 and 10.0 nM and a limit of detection (LOD) of 0.2 nM (5 fmol in 25 µL of sample) for the synthetic target miRNA without any amplification step. An acceptable selectivity towards single-base mismatched oligonucleotides, a high storage stability of the b-Cp-MBs, and usefulness for the accurate determination of miRNA-21 in raw total RNA (RNAt) extracted from breast cancer cells (MCF-7) were demonstrated.


Assuntos
Técnicas Biossensoriais , Eletrodos , Peroxidase do Rábano Silvestre , Humanos , Campos Magnéticos , MicroRNAs , Neoplasias , Hibridização de Ácido Nucleico
9.
Int J Mol Sci ; 18(11)2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-29120349

RESUMO

This work describes a sensitive amperometric magneto-biosensor for single-step and rapid determination of microRNAs (miRNAs). The developed strategy involves the use of direct hybridization of the target miRNA (miRNA-21) with a specific biotinylated DNA probe immobilized on streptavidin-modified magnetic beads (MBs), and labeling of the resulting heteroduplexes with a specific DNA-RNA antibody and the bacterial protein A (ProtA) conjugated with an horseradish peroxidase (HRP) homopolymer (Poly-HRP40) as an enzymatic label for signal amplification. Amperometric detection is performed upon magnetic capture of the modified MBs onto the working electrode surface of disposable screen-printed carbon electrodes (SPCEs) using the H2O2/hydroquinone (HQ) system. The magnitude of the cathodic signal obtained at -0.20 V (vs. the Ag pseudo-reference electrode) demonstrated linear dependence with the concentration of the synthetic target miRNA over the 1.0 to 100 pM range. The method provided a detection limit (LOD) of 10 attomoles (in a 25 µL sample) without any target miRNA amplification in just 30 min (once the DNA capture probe-MBs were prepared). This approach shows improved sensitivity compared with that of biosensors constructed with the same anti-DNA-RNA Ab as capture instead of a detector antibody and further labeling with a Strep-HRP conjugate instead of the Poly-HRP40 homopolymer. The developed strategy involves a single step working protocol, as well as the possibility to tailor the sensitivity by enlarging the length of the DNA/miRNA heteroduplexes using additional probes and/or performing the labelling with ProtA conjugated with homopolymers prepared with different numbers of HRP molecules. The practical usefulness was demonstrated by determination of the endogenous levels of the mature target miRNA in 250 ng raw total RNA (RNAt) extracted from human mammary epithelial normal (MCF-10A) and cancer (MCF-7) cells and tumor tissues.


Assuntos
Biomarcadores Tumorais/análise , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , MicroRNAs/análise , Neoplasias/diagnóstico , Anticorpos Antinucleares/química , Carbono/química , DNA Complementar/química , Eletrodos , Humanos , Limite de Detecção , Células MCF-7 , MicroRNAs/química , Hibridização de Ácido Nucleico/métodos , Sensibilidade e Especificidade , Fatores de Tempo
10.
PLoS One ; 12(4): e0175056, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28376106

RESUMO

The first electrochemical immunosensor for the determination of fibroblast growth factor receptor 4 (FGFR4) biomarker is reported in this work. The biosensor involves a sandwich configuration with covalent immobilization of a specific capture antibody onto activated carboxylic-modified magnetic microcarriers (HOOC-MBs) and amperometric detection at disposable carbon screen-printed electrodes (SPCEs). The biosensor exhibits a great analytical performance regarding selectivity for the target protein and a low LOD of 48.2 pg mL-1. The electrochemical platform was successfully applied for the determination of FGFR4 in different cancer cell lysates without any apparent matrix effect after a simple sample dilution and using only 2.5 µg of the raw lysate. Comparison of the results with those provided by a commercial ELISA kit shows competitive advantages by using the developed immunosensor in terms of simplicity, analysis time, and portability and cost-affordability of the required instrumentation for the accurate determination of FGFR4 in cell lysates.


Assuntos
Biomarcadores Tumorais/análise , Técnicas Biossensoriais/métodos , Fator 4 de Crescimento de Fibroblastos/análise , Técnicas Biossensoriais/estatística & dados numéricos , Linhagem Celular Tumoral , Técnicas Eletroquímicas , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoensaio/métodos , Limite de Detecção , Células MCF-7 , Magnetismo
11.
Anal Chem ; 88(24): 12339-12345, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-28193070

RESUMO

Autoantibodies raised against tumor-associated antigens have shown high promise as clinical biomarkers for reliable diagnosis, prognosis, and therapy monitoring of cancer. An electrochemical disposable biosensor for the specific and sensitive determination of p53-specific autoantibodies has been developed for the first time in this work. This biosensor involves the use of magnetic microcarriers (MBs) modified with covalently immobilized HaloTag fusion p53 protein as solid supports for the selective capture of specific autoantibodies. After magnetic capture of the modified MBs onto screen-printed carbon working electrodes, the amperometric signal using the system hydroquinone/H2O2 was related to the levels of p53-autoantibodies in the sample. The biosensor was applied for the analysis of sera from 24 patients with high-risk of developing colorectal cancer and 6 from patients already diagnosed with colorectal (4) and ovarian (2) cancer. The developed biosensor was able to determine p53 autoantibodies with a sensitivity higher than that of a commercial standard ELISA using a just-in-time produced protein in a simpler protocol with less sample volume and easily miniaturized and cost-effective instrumentation.


Assuntos
Autoanticorpos/sangue , Autoanticorpos/imunologia , Técnicas Biossensoriais/métodos , Neoplasias/sangue , Neoplasias/imunologia , Proteína Supressora de Tumor p53/imunologia , Técnicas Biossensoriais/instrumentação , Neoplasias Colorretais/sangue , Neoplasias Colorretais/imunologia , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Desenho de Equipamento , Feminino , Humanos , Proteínas Imobilizadas/química , Proteínas Imobilizadas/imunologia , Imunidade Humoral , Limite de Detecção , Biópsia Líquida/instrumentação , Biópsia Líquida/métodos , Modelos Moleculares , Neoplasias Ovarianas/sangue , Neoplasias Ovarianas/imunologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/imunologia , Proteína Supressora de Tumor p53/química
12.
Angew Chem Int Ed Engl ; 53(24): 6168-71, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24789269

RESUMO

MicroRNAs (miRs) have emerged as important clinical biomarkers with both diagnostic and prognostic value for relevant diseases, such as cancer. MiRs pose unique challenges for detection and are currently detected by northern blotting, real-time PCR, and microarray techniques. These expensive, complicated, and time-consuming techniques are not feasible for on-site miR determination. In this study, amperometric magnetobiosensors involving RNA-binding viral protein p19 as a selective biorecognition element were developed for miR quantification. The p19-based magnetosensors were able to detect 0.4 fmol of a synthetic target and endogenous miR-21 (selected as a model for its role in a wide variety of cancers) in only 2 h in total RNA extracted from cancer cells and human breast-tumor specimens without PCR amplification and sample preprocessing. These results open up formidable perspectives for the diagnosis and prognosis of human cancers and for drug-discovery programs.


Assuntos
Técnicas Biossensoriais/métodos , MicroRNAs/química , Neoplasias/genética , Proteínas do Core Viral/genética , Humanos , MicroRNAs/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA