Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 49(12): 7011-7034, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34125917

RESUMO

The modification of adenosine to inosine at the wobble position (I34) of tRNA anticodons is an abundant and essential feature of eukaryotic tRNAs. The expansion of inosine-containing tRNAs in eukaryotes followed the transformation of the homodimeric bacterial enzyme TadA, which generates I34 in tRNAArg and tRNALeu, into the heterodimeric eukaryotic enzyme ADAT, which modifies up to eight different tRNAs. The emergence of ADAT and its larger set of substrates, strongly influenced the tRNA composition and codon usage of eukaryotic genomes. However, the selective advantages that drove the expansion of I34-tRNAs remain unknown. Here we investigate the functional relevance of I34-tRNAs in human cells and show that a full complement of these tRNAs is necessary for the translation of low-complexity protein domains enriched in amino acids cognate for I34-tRNAs. The coding sequences for these domains require codons translated by I34-tRNAs, in detriment of synonymous codons that use other tRNAs. I34-tRNA-dependent low-complexity proteins are enriched in functional categories related to cell adhesion, and depletion in I34-tRNAs leads to cellular phenotypes consistent with these roles. We show that the distribution of these low-complexity proteins mirrors the distribution of I34-tRNAs in the phylogenetic tree.


Assuntos
Inosina/metabolismo , Biossíntese de Proteínas , RNA de Transferência/metabolismo , Adenosina Desaminase/genética , Adesão Celular , Processos de Crescimento Celular , Linhagem Celular , Códon , Eucariotos/genética , Feminino , Células HEK293 , Humanos , Domínios Proteicos/genética , Inibidores da Síntese de Proteínas/farmacologia , RNA Mensageiro/metabolismo , RNA de Transferência/química , Ribossomos/metabolismo
2.
Genes (Basel) ; 12(4)2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921764

RESUMO

The nucleoside inosine plays an important role in purine biosynthesis, gene translation, and modulation of the fate of RNAs. The editing of adenosine to inosine is a widespread post-transcriptional modification in transfer RNAs (tRNAs) and messenger RNAs (mRNAs). At the wobble position of tRNA anticodons, inosine profoundly modifies codon recognition, while in mRNA, inosines can modify the sequence of the translated polypeptide or modulate the stability, localization, and splicing of transcripts. Inosine is also found in non-coding and exogenous RNAs, where it plays key structural and functional roles. In addition, molecular inosine is an important secondary metabolite in purine metabolism that also acts as a molecular messenger in cell signaling pathways. Here, we review the functional roles of inosine in biology and their connections to human health.


Assuntos
Códon , Doença/genética , Inosina/genética , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA de Transferência/genética , Animais , Humanos , Inosina/metabolismo , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo
3.
Cells ; 9(4)2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290274

RESUMO

BRCA1 inactivation is a hallmark of familial breast cancer, often associated with aggressive triple negative breast cancers. BRCA1 is a tumor suppressor with known functions in DNA repair, transcription regulation, cell cycle control, and apoptosis. In the present study, we demonstrate that BRCA1 is also a translational regulator. We previously showed that BRCA1 was implicated in translation regulation. Here, we asked whether translational control could be a novel function of BRCA1 that contributes to its tumor suppressive activity. A combination of RNA-binding protein immunoprecipitation, microarray analysis, and polysome profiling, was used to identify the mRNAs that were specifically deregulated under BRCA1 deficiency. Western blot analysis allowed us to confirm at the protein level the deregulated translation of a subset of mRNAs. A unique and dedicated cohort of patients with documented germ-line BRCA1 pathogenic variant statues was set up, and tissue microarrays with the biopsies of these patients were constructed and analyzed by immunohistochemistry for their content in each candidate protein. Here, we show that BRCA1 translationally regulates a subset of mRNAs with which it associates. These mRNAs code for proteins involved in major programs in cancer. Accordingly, the level of these key proteins is correlated with BRCA1 status in breast cancer cell lines and in patient breast tumors. ADAT2, one of these key proteins, is proposed as a predictive biomarker of efficacy of treatments recently recommended to patients with BRCA1 deficiency. This study proposes that translational control may represent a novel molecular mechanism with potential clinical impact through which BRCA1 is a tumor suppressor.


Assuntos
Proteína BRCA1/genética , Neoplasias de Mama Triplo Negativas/genética , Adulto , Idoso , Proteína BRCA1/metabolismo , Feminino , Genes Supressores de Tumor , Humanos , Pessoa de Meia-Idade , Transfecção , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
4.
Mol Biol Evol ; 36(4): 650-662, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30590541

RESUMO

The modification of adenosine to inosine at the first position of transfer RNA (tRNA) anticodons (I34) is widespread among bacteria and eukaryotes. In bacteria, the modification is found in tRNAArg and is catalyzed by tRNA adenosine deaminase A, a homodimeric enzyme. In eukaryotes, I34 is introduced in up to eight different tRNAs by the heterodimeric adenosine deaminase acting on tRNA. This substrate expansion significantly influenced the evolution of eukaryotic genomes in terms of codon usage and tRNA gene composition. However, the selective advantages driving this process remain unclear. Here, we have studied the evolution of I34, tRNA adenosine deaminase A, adenosine deaminase acting on tRNA, and their relevant codons in a large set of bacterial and eukaryotic species. We show that a functional expansion of I34 to tRNAs other than tRNAArg also occurred within bacteria, in a process likely initiated by the emergence of unmodified A34-containing tRNAs. In eukaryotes, we report on a large variability in the use of I34 in protists, in contrast to a more uniform presence in fungi, plans, and animals. Our data support that the eukaryotic expansion of I34-tRNAs was driven by the improvement brought by these tRNAs to the synthesis of proteins highly enriched in certain amino acids.


Assuntos
Evolução Molecular , Inosina , RNA de Transferência/genética , Animais , Oenococcus/genética , Filogenia , Proteoma , Tetrahymena thermophila/genética
5.
RNA Biol ; 15(4-5): 500-507, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28880718

RESUMO

The modification of adenosine to inosine at position 34 of tRNA anticodons has a profound impact upon codon-anticodon recognition. In bacteria, I34 is thought to exist only in tRNAArg, while in eukaryotes the modification is present in eight different tRNAs. In eukaryotes, the widespread use of I34 strongly influenced the evolution of genomes in terms of tRNA gene abundance and codon usage. In humans, codon usage indicates that I34 modified tRNAs are preferred for the translation of highly repetitive coding sequences, suggesting that I34 is an important modification for the synthesis of proteins of highly skewed amino acid composition. Here we extend the analysis of distribution of codons that are recognized by I34 containing tRNAs to all phyla known to use this modification. We find that the preference for codons recognized by such tRNAs in genes with highly biased codon compositions is universal among eukaryotes, and we report that, unexpectedly, some bacterial phyla show a similar preference. We demonstrate that the genomes of these bacterial species contain previously undescribed tRNA genes that are potential substrates for deamination at position 34.


Assuntos
Códon/química , Cianobactérias/genética , Eucariotos/genética , Firmicutes/genética , Código Genético , Inosina/metabolismo , RNA de Transferência de Arginina/genética , Adenosina/genética , Adenosina/metabolismo , Aminoácidos/genética , Aminoácidos/metabolismo , Anticódon/química , Anticódon/metabolismo , Evolução Biológica , Códon/metabolismo , Cianobactérias/metabolismo , Eucariotos/metabolismo , Firmicutes/metabolismo , Humanos , Inosina/genética , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Transferência de Arginina/metabolismo , Transcriptoma
6.
Nucleic Acids Res ; 43(10): 5145-57, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25916855

RESUMO

Transfer RNAs (tRNAs) are key adaptor molecules of the genetic code that are heavily modified post-transcriptionally. Inosine at the first residue of the anticodon (position 34; I34) is an essential widespread tRNA modification that has been poorly studied thus far. The modification in eukaryotes results from a deamination reaction of adenine that is catalyzed by the heterodimeric enzyme adenosine deaminase acting on tRNA (hetADAT), composed of two subunits: ADAT2 and ADAT3. Using high-throughput small RNA sequencing (RNAseq), we show that this modification is incorporated to human tRNAs at the precursor tRNA level and during maturation. We also functionally validated the human genes encoding for hetADAT and show that the subunits of this enzyme co-localize in nucleus in an ADAT2-dependent manner. Finally, by knocking down HsADAT2, we demonstrate that variations in the cellular levels of hetADAT will result in changes in the levels of I34 modification in all its potential substrates. Altogether, we present RNAseq as a powerful tool to study post-transcriptional tRNA modifications at the precursor tRNA level and give the first insights on the biology of I34 tRNA modification in metazoans.


Assuntos
Inosina/metabolismo , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA de Transferência/metabolismo , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Núcleo Celular/enzimologia , Núcleo Celular/genética , Células HEK293 , Humanos , Precursores de RNA/química , RNA de Transferência/química , Análise de Sequência de RNA
7.
FEBS Lett ; 588(23): 4279-86, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25263703

RESUMO

Inosine on transfer RNAs (tRNAs) are post-transcriptionally formed by a deamination mechanism of adenosines at positions 34, 37 and 57 of certain tRNAs. Despite its ubiquitous nature, the biological role of inosine in tRNAs remains poorly understood. Recent developments in the study of nucleotide modifications are beginning to indicate that the dynamics of such modifications are used in the control of specific genetic programs. Likewise, the essentiality of inosine-modified tRNAs in genome evolution and animal biology is becoming apparent. Here we review our current understanding on the role of inosine in tRNAs, the enzymes that catalyze the modification and the evolutionary link between such enzymes and other deaminases.


Assuntos
Adenosina/metabolismo , Evolução Molecular , Inosina/metabolismo , Edição de RNA , RNA de Transferência/metabolismo , Adenosina Desaminase/metabolismo , Animais , Humanos , RNA de Transferência/química
8.
Trends Mol Med ; 20(6): 306-14, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24581449

RESUMO

Transfer RNAs (tRNAs) are key for efficient and accurate protein translation. To be fully active, tRNAs need to be heavily modified post-transcriptionally. Growing evidence indicates that tRNA modifications and the enzymes catalyzing such modifications may play important roles in complex human pathologies. Here, we have compiled current knowledge that directly link tRNA modifications to human diseases such as cancer, type 2 diabetes (T2D), neurological disorders, and mitochondrial-linked disorders. The molecular mechanisms behind these connections remain, for the most part, unknown. As we progress towards the understanding of the roles played by hypomodified tRNAs in human disease, novel areas of therapeutic intervention may be discovered.


Assuntos
Diabetes Mellitus Tipo 2/genética , Neoplasias/genética , Doenças do Sistema Nervoso/genética , RNA de Transferência/química , RNA de Transferência/fisiologia , Humanos , Doenças Mitocondriais/genética , Terapia de Alvo Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA