Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0298032, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38820384

RESUMO

The FA/BRCA pathway safeguards DNA replication by repairing interstrand crosslinks (ICL) and maintaining replication fork stability. Chromatin structure, which is in part regulated by histones posttranslational modifications (PTMs), has a role in maintaining genomic integrity through stabilization of the DNA replication fork and promotion of DNA repair. An appropriate balance of PTMs, especially acetylation of histones H4 in nascent chromatin, is required to preserve a stable DNA replication fork. To evaluate the acetylation status of histone H4 at the replication fork of FANCA deficient cells, we compared histone acetylation status at the DNA replication fork of isogenic FANCA deficient and FANCA proficient cell lines by using accelerated native immunoprecipitation of nascent DNA (aniPOND) and in situ protein interactions in the replication fork (SIRF) assays. We found basal hypoacetylation of multiple residues of histone H4 in FA replication forks, together with increased levels of Histone Deacetylase 1 (HDAC1). Interestingly, high-dose short-term treatment with mitomycin C (MMC) had no effect over H4 acetylation abundance at the replication fork. However, chemical inhibition of histone deacetylases (HDAC) with Suberoylanilide hydroxamic acid (SAHA) induced acetylation of the FANCA deficient DNA replication forks to levels comparable to their isogenic control counterparts. This forced permanence of acetylation impacted FA cells homeostasis by inducing DNA damage and promoting G2 cell cycle arrest. Altogether, this caused reduced RAD51 foci formation and increased markers of replication stress, including phospho-RPA-S33. Hypoacetylation of the FANCA deficient replication fork, is part of the cellular phenotype, the perturbation of this feature by agents that prevent deacetylation, such as SAHA, have a deleterious effect over the delicate equilibrium they have reached to perdure despite a defective FA/BRCA pathway.


Assuntos
Dano ao DNA , Replicação do DNA , Proteína do Grupo de Complementação A da Anemia de Fanconi , Histonas , Histonas/metabolismo , Humanos , Replicação do DNA/efeitos dos fármacos , Acetilação/efeitos dos fármacos , Proteína do Grupo de Complementação A da Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação A da Anemia de Fanconi/genética , Mitomicina/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Vorinostat/farmacologia , Ácidos Hidroxâmicos/farmacologia
2.
Gac. méd. Méx ; 160(1): 81-91, ene.-feb. 2024. tab, graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1557807

RESUMO

Resumen Antecedentes: Las alteraciones cromosómicas están presentes en 50 a 60 % de los abortos espontáneos y en 6 a 19 % de los mortinatos. Aunque se prefieren los microarreglos para estudiarlos, numerosos hospitales no pueden ofrecerlos. Objetivo: Presentar los resultados del estudio citogenético de 303 productos de la concepción (POC), 184 se obtuvieron de abortos espontáneos, 49 fueron mortinatos y en 17 no se identificó la de edad gestacional. Material y métodos: Se empleó cariotipo, hibridación in situ con fluorescencia, secuencias cortas repetidas en tándem y microarreglos, según el tipo de pérdida y la muestra disponible. Resultados: En 29 POC se encontró tejido materno, por lo que fueron eliminados de los análisis. En 250 (91.2 %)/274 casos se obtuvieron resultados informativos; la tasa de éxito del cariotipo fue de 80.7 %; la de los microarreglos de SNP, de 94.5 %; y la de la hibridación fluorescente in situ y la repetición corta en tándem, de 100 %. Se observaron anomalías citogenéticas en 57.6 % de los abortos espontáneos y en 24.5 % de los mortinatos; 94 % de las anomalías fueron numéricas y 6 %, submicroscópicas. Conclusiones: El cariotipo en conjunto con el estudio de secuencias cortas repetidas en tándem para descartar contaminación de células maternas es efectivo para estudiar abortos espontáneos; los microarreglos se recomiendan en los mortinatos.


Abstract Background: Chromosomal abnormalities are present in 50 to 60 % of miscarriages and in 6 to 19 % of stillbirths. Although microarrays are preferred for studying chromosomal abnormalities, many hospitals cannot offer this methodology. Objective: To present the results of the cytogenetic analysis of 303 products of conception (POC), which included 184 miscarriages, 49 stillbirths and 17 cases of undefined age. Material and methods: Karyotyping, fluorescence in situ hybridization, short tandem repeats and microarrays were used, depending on the type of loss and available sample. Results: In 29 POCs we found maternal tissue and were eliminated from the analyses. Informative results were obtained in 250 (91.2 %)/274 cases; the karyotyping success rate was 80.7 %; that of single nucleotide polymorphism microarrays, 94.5 %; and that of fluorescence in situ hybridization and short tandem repeat, 100 %. Cytogenetic abnormalities were observed in 57.6 % of miscarriages and in 24.5 % of stillbirths; 94 % of total anomalies were numerical and 6 % were submicroscopic. Conclusions: Karyotyping with simultaneous short tandem repeat study to rule out contamination of maternal cells is effective for studying miscarriages; in stillbirths, microarrays are recommended.

3.
J Theor Biol ; 573: 111608, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37595867

RESUMO

Double strand break (DSB) repair is critical to maintaining the integrity of the genome. DSB repair deficiency underlies multiple pathologies, including cancer, chromosome instability syndromes, and, potentially, neurodevelopmental defects. DSB repair is mainly handled by two pathways: highly accurate homologous recombination (HR), which requires a sister chromatid for template-based repair, limited to S/G2 phases of the cell cycle, and canonical non-homologous end joining (c-NHEJ), available throughout the cell cycle in which minimum homology is sufficient for highly efficient yet error-prone repair. Some circumstances, such as cancer, require alternative highly mutagenic DSB repair pathways like microhomology-mediated end-joining (MMEJ) and single-strand annealing (SSA), which are triggered to attend to DNA damage. These non-canonical repair alternatives are emerging as prominent drivers of resistance in drug-based tumor therapies. Multiple DSB repair options require tight inter-pathway regulation to prevent unscheduled activities. In addition to this complexity, epigenetic modifications of the histones surrounding the DSB region are emerging as critical regulators of the DSB repair pathway choice. Modeling approaches to understanding DSBs repair pathway choice are advantageous to perform simulations and generate predictions on previously uncharacterized aspects of DSBs response. In this work, we present a Boolean network model of the DSB repair pathway choice that incorporates the knowledge, into a dynamic system, of the inter-pathways regulation involved in DSB repair, i.e., HR, c-NHEJ, SSA, and MMEJ. Our model recapitulates the well-characterized HR activity observed in wild-type cells in response to DSBs. It also recovers clinically relevant behaviors of BRCA1/FANCS mutants, and their corresponding drug resistance mechanisms ascribed to DNA repair gain-of-function pathogenic variants. Since epigenetic modifiers are dynamic and possible druggable targets, we incorporated them into our model to better characterize their involvement in DSB repair. Our model predicted that loss of the TIP60 complex and its corresponding histone acetylation activity leads to activation of SSA in response to DSBs. Our experimental validation showed that TIP60 effectively prevents activation of RAD52, a key SSA executor, and confirms the suitable use of Boolean network modeling for understanding DNA DSB repair.


Assuntos
Dano ao DNA , Reparo do DNA , Ciclo Celular , Mutagênese , Divisão Celular
4.
Int J Mol Sci ; 23(4)2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-35216452

RESUMO

Fanconi anemia (FA) is a rare genetic disorder caused by pathogenic variants (PV) in at least 22 genes, which cooperate in the Fanconi anemia/Breast Cancer (FA/BRCA) pathway to maintain genome stability. PV in FANCA, FANCC, and FANCG account for most cases (~90%). This study evaluated the chromosomal, molecular, and physical phenotypic findings of a novel founder FANCG PV, identified in three patients with FA from the Mixe community of Oaxaca, Mexico. All patients presented chromosomal instability and a homozygous PV, FANCG: c.511-3_511-2delCA, identified by next-generation sequencing analysis. Bioinformatic predictions suggest that this deletion disrupts a splice acceptor site promoting the exon 5 skipping. Analysis of Cytoscan 750 K arrays for haplotyping and global ancestry supported the Mexican origin and founder effect of the variant, reaffirming the high frequency of founder PV in FANCG. The degree of bone marrow failure and physical findings (described through the acronyms VACTERL-H and PHENOS) were used to depict the phenotype of the patients. Despite having a similar frequency of chromosomal aberrations and genetic constitution, the phenotype showed a wide spectrum of severity. The identification of a founder PV could help for a systematic and accurate genetic screening of patients with FA suspicion in this population.


Assuntos
Anemia de Fanconi , Biologia Computacional , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação G da Anemia de Fanconi/genética , Efeito Fundador , Homozigoto , Humanos , México
5.
Cell Stem Cell ; 28(1): 33-47.e8, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-32997960

RESUMO

Bone marrow failure (BMF) in Fanconi anemia (FA) patients results from dysfunctional hematopoietic stem and progenitor cells (HSPCs). To identify determinants of BMF, we performed single-cell transcriptome profiling of primary HSPCs from FA patients. In addition to overexpression of p53 and TGF-ß pathway genes, we identified high levels of MYC expression. We correspondingly observed coexistence of distinct HSPC subpopulations expressing high levels of TP53 or MYC in FA bone marrow (BM). Inhibiting MYC expression with the BET bromodomain inhibitor (+)-JQ1 reduced the clonogenic potential of FA patient HSPCs but rescued physiological and genotoxic stress in HSPCs from FA mice, showing that MYC promotes proliferation while increasing DNA damage. MYC-high HSPCs showed significant downregulation of cell adhesion genes, consistent with enhanced egress of FA HSPCs from bone marrow to peripheral blood. We speculate that MYC overexpression impairs HSPC function in FA patients and contributes to exhaustion in FA bone marrow.


Assuntos
Anemia de Fanconi , Animais , Medula Óssea , Dano ao DNA , Anemia de Fanconi/genética , Células-Tronco Hematopoéticas , Humanos , Camundongos , Fator de Crescimento Transformador beta
6.
Mol Genet Genomic Med ; 7(6): e710, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31044565

RESUMO

BACKGROUND: Fanconi anemia (FA) (OMIM #227650) is a rare hereditary disease characterized by genomic instability. The clinical phenotype involves malformations, bone marrow failure, and cancer predisposition. Genetic heterogeneity is a remarkable feature of FA; at least 22 FANC genes are known to cooperate in a unique FA/BRCA repair pathway. A common rule on the mutations found in these genes is allelic heterogeneity, except for mutations known to have arisen from a founder effect like the FANCC c.67delG in the Dutch Mennonite Community. Here, we present an 11-year-old male patient, member of the Mennonite Community of Tamaulipas México, with a clinical and cytogenetic diagnosis of FA. METHOD: Chromosome fragility test was performed in all siblings. Genomic DNA was obtained from peripheral blood samples. Sanger sequencing was used to identify the FANCC c.67delG mutation (NC_000009.11(NM_000136.2):c.67delG p.(Asp23IlefsTer23)) and its accompanying haplotype. RESULTS: The FANCC c.67delG mutation in 13 members of his family confirmed a FA diagnosis in two of his siblings and identified heterozygous carriers. Haplotype analysis supports that in this family, FA is caused by the founder mutation that initially appeared in Mennonite Dutch and followed this population's migrations through Canada and further to Mexico. CONCLUSION: The identification of the FANCC c.67delG mutation in this family not only allows proper genetic counseling, but it also grants the possibility to raise awareness of FA risk among the Mennonite community living in Mexico.


Assuntos
Proteína do Grupo de Complementação C da Anemia de Fanconi/genética , Anemia de Fanconi/genética , Efeito Fundador , Criança , Anemia de Fanconi/patologia , Deleção de Genes , Heterozigoto , Humanos , Masculino , México , Linhagem
7.
Front Genet ; 10: 411, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31130988

RESUMO

DNA damage adaptation (DDA) allows the division of cells with unrepaired DNA damage. DNA repair deficient cells might take advantage of DDA to survive. The Fanconi anemia (FA) pathway repairs DNA interstrand crosslinks (ICLs), and deficiencies in this pathway cause a fraction of breast and ovarian cancers as well as FA, a chromosome instability syndrome characterized by bone marrow failure and cancer predisposition. FA cells are hypersensitive to ICLs; however, DDA might promote their survival. We present the FA-CHKREC Boolean Network Model, which explores how FA cells might use DDA. The model integrates the FA pathway with the G2 checkpoint and the checkpoint recovery (CHKREC) processes. The G2 checkpoint mediates cell-cycle arrest (CCA) and the CHKREC activates cell-cycle progression (CCP) after resolution of DNA damage. Analysis of the FA-CHKREC network indicates that CHKREC drives DDA in FA cells, ignoring the presence of unrepaired DNA damage and allowing their division. Experimental inhibition of WIP1, a CHKREC component, in FA lymphoblast and cancer cell lines prevented division of FA cells, in agreement with the prediction of the model.

8.
Toxicol In Vitro ; 51: 63-73, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29723631

RESUMO

Curcumin is a polyphenol compound extracted from Curcuma longa plant, is a molecule with pleiotropic effects that suppresses transformation, proliferation and metastasis of malignant tumors. Curcumin can cause different kinds of cell death depending of its concentration on the exposed cell type. Here we show that exposure of the glioblastoma cell line A172 to curcumin at 50 µM, the IC50, causes morphological change characteristic of paraptosis cell-death. Vesicles derived from the endoplasmic reticulum (ER) and low membrane potential of the mitochondria were constantly found in the exposed cells. Furthermore, changes in expression of the ER Stress Response (ERSR) genes IRE1 and ATF6, and the microRNAs (miRNAs) miR-27a, miR-222, miR-449 was observed after exposure to curcumin. AKT-Insulin and p53-BCL2 networks were predicted being modulated by the affected miRNAs. Furthermore, AKT protein levels reduction was confirmed. Our data, strongly suggest that curcumin exerts its cell-death properties by affecting the integrity of the reticulum, leading to paraptosis in the glioblastoma cells. These data unveils the versatility of curcumin to control cancer progression.


Assuntos
Antineoplásicos/farmacologia , Curcumina/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , MicroRNAs/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo
9.
Theor Biol Med Model ; 12: 19, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26385365

RESUMO

BACKGROUND: The FA/BRCA pathway repairs DNA interstrand crosslinks. Mutations in this pathway cause Fanconi anemia (FA), a chromosome instability syndrome with bone marrow failure and cancer predisposition. Upon DNA damage, normal and FA cells inhibit the cell cycle progression, until the G2/M checkpoint is turned off by the checkpoint recovery, which becomes activated when the DNA damage has been repaired. Interestingly, highly damaged FA cells seem to override the G2/M checkpoint. In this study we explored with a Boolean network model and key experiments whether checkpoint recovery activation occurs in FA cells with extensive unrepaired DNA damage. METHODS: We performed synchronous/asynchronous simulations of the FA/BRCA pathway Boolean network model. FA-A and normal lymphoblastoid cell lines were used to study checkpoint and checkpoint recovery activation after DNA damage induction. The experimental approach included flow cytometry cell cycle analysis, cell division tracking, chromosome aberration analysis and gene expression analysis through qRT-PCR and western blot. RESULTS: Computational simulations suggested that in FA mutants checkpoint recovery activity inhibits the checkpoint components despite unrepaired DNA damage, a behavior that we did not observed in wild-type simulations. This result implies that FA cells would eventually reenter the cell cycle after a DNA damage induced G2/M checkpoint arrest, but before the damage has been fixed. We observed that FA-A cells activate the G2/M checkpoint and arrest in G2 phase, but eventually reach mitosis and divide with unrepaired DNA damage, thus resolving the initial checkpoint arrest. Based on our model result we look for ectopic activity of checkpoint recovery components. We found that checkpoint recovery components, such as PLK1, are expressed to a similar extent as normal undamaged cells do, even though FA-A cells harbor highly damaged DNA. CONCLUSIONS: Our results show that FA cells, despite extensive DNA damage, do not loss the capacity to express the transcriptional and protein components of checkpoint recovery that might eventually allow their division with unrepaired DNA damage. This might allow cell survival but increases the genomic instability inherent to FA individuals and promotes cancer.


Assuntos
Ciclo Celular , Dano ao DNA , Reparo do DNA , Anemia de Fanconi/patologia , Western Blotting , Neoplasias da Mama/patologia , Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem Celular , Reparo do DNA/efeitos dos fármacos , Densitometria , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Mitomicina/farmacologia , Mutação/genética
10.
Environ Mol Mutagen ; 56(5): 457-67, 2015 06.
Artigo em Inglês | MEDLINE | ID: mdl-25663157

RESUMO

Fanconi's anemia (FA) is a recessive disease; 16 genes are currently recognized in FA. FA proteins participate in the FA/BRCA pathway that plays a crucial role in the repair of DNA damage induced by crosslinking compounds. Hydroxyurea (HU) is an agent that induces replicative stress by inhibiting ribonucleotide reductase (RNR), which synthesizes deoxyribonucleotide triphosphates (dNTPs) necessary for DNA replication and repair. HU is known to activate the FA pathway; however, its clastogenic effects are not well characterized. We have investigated the effects of HU treatment alone or in sequential combination with mitomycin-C (MMC) on FA patient-derived lymphoblastoid cell lines from groups FA-A, B, C, D1/BRCA2, and E and on lymphocytes from two unclassified FA patients. All FA cells showed a significant increase (P < 0.05) in chromosomal aberrations following treatment with HU during the last 3 h before mitosis. Furthermore, when FA cells previously exposed to MMC were treated with HU, we observed an increase of MMC-induced DNA damage that was characterized by high occurrence of DNA breaks and a reduction in rejoined chromosomal aberrations. These findings show that exposure to HU during G2 induces chromosomal aberrations by a mechanism that is independent of its well-known role in replication fork stalling during S-phase and that HU interfered mainly with the rejoining process of DNA damage. We suggest that impaired oxidative stress response, lack of an adequate amount of dNTPs for DNA repair due to RNR inhibition, and interference with cell cycle control checkpoints underlie the clastogenic activity of HU in FA cells. Environ. Mol. Mutagen. 56:457-467, 2015. © 2015 Wiley Periodicals, Inc.


Assuntos
Aberrações Cromossômicas/induzido quimicamente , Anemia de Fanconi/sangue , Fase G2/efeitos dos fármacos , Hidroxiureia/toxicidade , Linfócitos/efeitos dos fármacos , Mitomicina/toxicidade , Mutagênicos/toxicidade , Linhagem Celular , Análise Citogenética , Sinergismo Farmacológico , Anemia de Fanconi/genética , Fase G2/genética , Voluntários Saudáveis , Humanos , Linfócitos/patologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética
11.
Bioinformatics ; 28(6): 858-66, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22267503

RESUMO

MOTIVATION: Fanconi anemia (FA) is a chromosomal instability syndrome originated by inherited mutations that impair the Fanconi Anemia/Breast Cancer (FA/BRCA) pathway, which is committed to the repair of DNA interstrand cross-links (ICLs). The disease displays increased spontaneous chromosomal aberrations and hypersensitivity to agents that create DNA interstrand cross-links. In spite of DNA damage, FA/BRCA-deficient cells are able to progress throughout the cell cycle, probably due to the activity of alternative DNA repair pathways, or due to defects in the checkpoints that monitor DNA integrity. RESULTS: We propose a Boolean network model of the FA/BRCA pathway, Checkpoint proteins and some alternative DNA repair pathways. To our knowledge, this is the largest network model incorporating a DNA repair pathway. Our model is able to simulate the ICL repair process mediated by the FA/BRCA pathway, the activation of Checkpoint proteins observed by recurrent DNA damage, as well as the repair of DNA double-strand breaks and DNA adducts. We generated a series of simulations for mutants, some of which have never been reported and thus constitute predictions about the function of the FA/BRCA pathway. Finally, our model suggests alternative DNA repair pathways that become active whenever the FA/BRCA pathway is defective.


Assuntos
Reparo do DNA , Anemia de Fanconi/metabolismo , Modelos Biológicos , Proteína BRCA1/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Ciclo Celular , Células Cultivadas , Dano ao DNA , Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Instabilidade Genômica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA