Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(51): e2316823120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38091289

RESUMO

Mitochondrial dysfunction plays a critical role in the pathogenesis of Alzheimer's disease (AD). Mitochondrial proteostasis regulated by chaperones and proteases in each compartment of mitochondria is critical for mitochondrial function, and it is suspected that mitochondrial proteostasis deficits may be involved in mitochondrial dysfunction in AD. In this study, we identified LONP1, an ATP-dependent protease in the matrix, as a top Aß42 interacting mitochondrial protein through an unbiased screening and found significantly decreased LONP1 expression and extensive mitochondrial proteostasis deficits in AD experimental models both in vitro and in vivo, as well as in the brain of AD patients. Impaired METTL3-m6A signaling contributed at least in part to Aß42-induced LONP1 reduction. Moreover, Aß42 interaction with LONP1 impaired the assembly and protease activity of LONP1 both in vitro and in vivo. Importantly, LONP1 knockdown caused mitochondrial proteostasis deficits and dysfunction in neurons, while restored expression of LONP1 in neurons expressing intracellular Aß and in the brain of CRND8 APP transgenic mice rescued Aß-induced mitochondrial deficits and cognitive deficits. These results demonstrated a critical role of LONP1 in disturbed mitochondrial proteostasis and mitochondrial dysfunction in AD and revealed a mechanism underlying intracellular Aß42-induced mitochondrial toxicity through its impact on LONP1 and mitochondrial proteostasis.


Assuntos
Doença de Alzheimer , Doenças Mitocondriais , Camundongos , Animais , Humanos , Proteostase , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Mitocôndrias/metabolismo , Camundongos Transgênicos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Doenças Mitocondriais/metabolismo , Metiltransferases/metabolismo , Proteases Dependentes de ATP/metabolismo
2.
J Alzheimers Dis ; 43(1): 57-65, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25061053

RESUMO

Cell cycle re-entry in Alzheimer's disease (AD) has emerged as an important pathological mechanism in the progression of the disease. This appearance of cell cycle related proteins has been linked to tau pathology in AD, but the causal and temporal relationship between the two is not completely clear. In this study, we found that hyperphosphorylated retinoblastoma protein (ppRb), a key regulator for G1/S transition, is correlated with a late marker for hyperphosphorylation of tau but not with other early markers for tau alteration in the 3xTg-AD mouse model. However, in AD brains, ppRb can colocalize with both early and later markers for tau alterations, and can often be found singly in many degenerating neurons, indicating the distinct development of pathology between the 3xTg-AD mouse model and human AD patients. The conclusions of this study are two-fold. First, our findings clearly demonstrate the pathological link between the aberrant cell cycle re-entry and tau pathology. Second, the chronological pattern of cell cycle re-entry with tau pathology in the 3xTg-AD mouse is different compared to AD patients suggesting the distinct pathogenic mechanism between the animal AD model and human AD patients.


Assuntos
Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Encéfalo/patologia , Encéfalo/fisiopatologia , Neurônios/patologia , Neurônios/fisiologia , Idoso , Idoso de 80 Anos ou mais , Animais , Ciclo Celular/fisiologia , Modelos Animais de Doenças , Progressão da Doença , Humanos , Camundongos Transgênicos , Emaranhados Neurofibrilares/patologia , Emaranhados Neurofibrilares/fisiologia , Fosforilação , Proteína do Retinoblastoma/metabolismo , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA