Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 11: 577815, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117380

RESUMO

T cells recognizing epitopes on the surface of mycobacteria-infected macrophages can impart protection, but with associated risk for reactivation to lung pathology. We aimed to identify antibodies specific to such epitopes, which carry potentials for development toward novel therapeutic constructs. Since epitopes presented in the context of major histocompatibility complex alleles are rarely recognized by naturally produced antibodies, we used a phage display library for the identification of monoclonal human single domain antibody producing clones. The selected 2C clone displayed T cell receptor-like recognition of an HLA-A*0201 bound 199KLVANNTRL207 peptide from the Ag85B antigen, which is known to be an immunodominant epitope for human T cells. The specificity of the selected domain antibody was demonstrated by solid phase immunoassay and by immunofluorescent surface staining of peptide loaded cells of the T2 cell line. The antibody affinity binding was determined by biolayer interferometry. Our results validated the used technologies as suitable for the generation of antibodies against epitopes on the surface of Mycobacterium tuberculosis infected cells. The potential approaches forward the development of antibody in immunotherapy of tuberculosis have been outlined in the discussion.


Assuntos
Aciltransferases/imunologia , Antígenos de Bactérias/imunologia , Antituberculosos/farmacologia , Proteínas de Bactérias/imunologia , Antígenos HLA-A/imunologia , Epitopos Imunodominantes , Mycobacterium tuberculosis/imunologia , Anticorpos de Cadeia Única/farmacologia , Linfócitos T/imunologia , Tuberculose/prevenção & controle , Especificidade de Anticorpos , Antituberculosos/imunologia , Linhagem Celular Tumoral , Técnicas de Visualização da Superfície Celular , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Humanos , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Tuberculose/imunologia , Tuberculose/microbiologia
2.
Plant J ; 99(5): 950-964, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31034710

RESUMO

Reactive oxidative species (ROS) and S-glutathionylation modulate the activity of plant cytosolic triosephosphate isomerases (cTPI). Arabidopsis thaliana cTPI (AtcTPI) is subject of redox regulation at two reactive cysteines that function as thiol switches. Here we investigate the role of these residues, AtcTPI-Cys13 and At-Cys218, by substituting them with aspartic acid that mimics the irreversible oxidation of cysteine to sulfinic acid and with amino acids that mimic thiol conjugation. Crystallographic studies show that mimicking AtcTPI-Cys13 oxidation promotes the formation of inactive monomers by reposition residue Phe75 of the neighboring subunit, into a conformation that destabilizes the dimer interface. Mutations in residue AtcTPI-Cys218 to Asp, Lys, or Tyr generate TPI variants with a decreased enzymatic activity by creating structural modifications in two loops (loop 7 and loop 6) whose integrity is necessary to assemble the active site. In contrast with mutations in residue AtcTPI-Cys13, mutations in AtcTPI-Cys218 do not alter the dimeric nature of AtcTPI. Therefore, modifications of residues AtcTPI-Cys13 and AtcTPI-Cys218 modulate AtcTPI activity by inducing the formation of inactive monomers and by altering the active site of the dimeric enzyme, respectively. The identity of residue AtcTPI-Cys218 is conserved in the majority of plant cytosolic TPIs, this conservation and its solvent-exposed localization make it the most probable target for TPI regulation upon oxidative damage by reactive oxygen species. Our data reveal the structural mechanisms by which S-glutathionylation protects AtcTPI from irreversible chemical modifications and re-routes carbon metabolism to the pentose phosphate pathway to decrease oxidative stress.


Assuntos
Arabidopsis/enzimologia , Citosol/enzimologia , Citosol/metabolismo , Triose-Fosfato Isomerase/química , Triose-Fosfato Isomerase/metabolismo , Sequência de Aminoácidos , Arabidopsis/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oxirredução , Conformação Proteica , Espécies Reativas de Oxigênio , Triose-Fosfato Isomerase/genética
3.
Proteins ; 86(7): 802-812, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29696695

RESUMO

Antibodies recognize protein targets with great affinity and specificity. However, posttranslational modifications and the presence of intrinsic disulfide-bonds pose difficulties for their industrial use. The immunoglobulin fold is one of the most ubiquitous folds in nature and it is found in many proteins besides antibodies. An example of a protein family with an immunoglobulin-like fold is the Cysteine Protease Inhibitors (ICP) family I42 of the MEROPs database for protease and protease inhibitors. Members of this protein family are thermostable and do not present internal disulfide bonds. Crystal structures of several ICPs indicate that they resemble the Ig-like domain of the human T cell co-receptor CD8α As ICPs present 2 flexible recognition loops that vary accordingly to their targeted protease, we hypothesize that members of this protein family would be ideal to design peptide aptamers that mimic protein-protein interactions. Herein, we use an ICP variant from Entamoeba histolytica (EhICP1) to mimic the interaction between p53 and MDM2. We found that a 13 amino-acid peptide derived from p53 can be introduced in 2 variable loops (DE, FG) but not the third (BC). Chimeric EhICP1-p53 form a stable complex with MDM2 at a micromolar range. Crystal structure of the EhICP1-p53(FG)-loop variant in complex with MDM2 reveals a swapping subdomain between 2 chimeric molecules, however, the p53 peptide interacts with MDM2 as in previous crystal structures. The structural details of the EhICP1-p53(FG) interaction with MDM2 resemble the interaction between an antibody and MDM2.


Assuntos
Domínios de Imunoglobulina , Modelos Moleculares , Proteínas Proto-Oncogênicas c-mdm2/química , Proteína Supressora de Tumor p53/química , Inibidores de Cisteína Proteinase/metabolismo , Entamoeba histolytica/química , Humanos , Ligação Proteica , Conformação Proteica , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
4.
Sci Rep ; 6: 32552, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27586352

RESUMO

Oligomerization of allergens plays an important role in IgE-mediated reactions, as effective crosslinking of IgE- FcεRI complexes on the cell membrane is dependent on the number of exposed B-cell epitopes in a single allergen molecule or on the occurrence of identical epitopes in a symmetrical arrangement. Few studies have attempted to experimentally demonstrate the connection between allergen dimerization and the ability to trigger allergic reactions. Here we studied plant allergenic profilins rHev b 8 (rubber tree) and rZea m 12 (maize) because they represent an important example of cross-reactivity in the latex-pollen-food syndrome. Both allergens in their monomeric and dimeric states were isolated and characterized by exclusion chromatography and mass spectrometry and were used in immunological in vitro experiments. Their crystal structures were solved, and for Hev b 8 a disulfide-linked homodimer was found. Comparing the structures we established that the longest loop is relevant for recognition by IgE antibodies, whereas the conserved regions are important for cross-reactivity. We produced a novel monoclonal murine IgE (mAb 2F5), specific for rHev b 8, which was useful to provide evidence that profilin dimerization considerably increases the IgE-mediated degranulation in rat basophilic leukemia cells.


Assuntos
Alérgenos/química , Hevea/metabolismo , Imunoglobulina E/imunologia , Proteínas de Plantas/química , Multimerização Proteica , Zea mays/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/metabolismo , Degranulação Celular , Cristalografia por Raios X , Feminino , Humanos , Hipersensibilidade/sangue , Hipersensibilidade/imunologia , Imunização , Imunoglobulina G/metabolismo , Interferometria , Camundongos Endogâmicos BALB C , Modelos Moleculares , Profilinas/química , Ratos
5.
J Biol Chem ; 291(28): 14430-46, 2016 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-27226617

RESUMO

Glycyl tRNA synthetase (GlyRS) provides a unique case among class II aminoacyl tRNA synthetases, with two clearly widespread types of enzymes: a dimeric (α2) species present in some bacteria, archaea, and eukaryotes; and a heterotetrameric form (α2ß2) present in most bacteria. Although the differences between both types of GlyRS at the anticodon binding domain level are evident, the extent and implications of the variations in the catalytic domain have not been described, and it is unclear whether the mechanism of amino acid recognition is also dissimilar. Here, we show that the α-subunit of the α2ß2 GlyRS from the bacterium Aquifex aeolicus is able to perform the first step of the aminoacylation reaction, which involves the activation of the amino acid with ATP. The crystal structure of the α-subunit in the complex with an analog of glycyl adenylate at 2.8 Å resolution presents a conformational arrangement that properly positions the cognate amino acid. This work shows that glycine is recognized by a subset of different residues in the two types of GlyRS. A structural and sequence analysis of class II catalytic domains shows that bacterial GlyRS is closely related to alanyl tRNA synthetase, which led us to define a new subclassification of these ancient enzymes and to propose an evolutionary path of α2ß2 GlyRS, convergent with α2 GlyRS and divergent from AlaRS, thus providing a possible explanation for the puzzling existence of two proteins sharing the same fold and function but not a common ancestor.


Assuntos
Glicina-tRNA Ligase/química , Filogenia , Bactérias/enzimologia , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica
6.
PLoS One ; 8(7): e69031, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23894402

RESUMO

BACKGROUND: We have previously proposed triosephosphate isomerase of Giardia lamblia (GlTIM) as a target for rational drug design against giardiasis, one of the most common parasitic infections in humans. Since the enzyme exists in the parasite and the host, selective inhibition is a major challenge because essential regions that could be considered molecular targets are highly conserved. Previous biochemical evidence showed that chemical modification of the non-conserved non-catalytic cysteine 222 (C222) inactivates specifically GlTIM. The inactivation correlates with the physicochemical properties of the modifying agent: addition of a non-polar, small chemical group at C222 reduces the enzyme activity by one half, whereas negatively charged, large chemical groups cause full inactivation. RESULTS: In this work we used mutagenesis to extend our understanding of the functional and structural effects triggered by modification of C222. To this end, six GlTIM C222 mutants with side chains having diverse physicochemical characteristics were characterized. We found that the polarity, charge and volume of the side chain in the mutant amino acid differentially alter the activity, the affinity, the stability and the structure of the enzyme. The data show that mutagenesis of C222 mimics the effects of chemical modification. The crystallographic structure of C222D GlTIM shows the disruptive effects of introducing a negative charge at position 222: the mutation perturbs loop 7, a region of the enzyme whose interactions with the catalytic loop 6 are essential for TIM stability, ligand binding and catalysis. The amino acid sequence of TIM in phylogenetic diverse groups indicates that C222 and its surrounding residues are poorly conserved, supporting the proposal that this region is a good target for specific drug design. CONCLUSIONS: The results demonstrate that it is possible to inhibit species-specifically a ubiquitous, structurally highly conserved enzyme by modification of a non-conserved, non-catalytic residue through long-range perturbation of essential regions.


Assuntos
Giardia lamblia/enzimologia , Mutagênese Sítio-Dirigida , Triose-Fosfato Isomerase/química , Triose-Fosfato Isomerase/metabolismo , Biocatálise , Sequência Conservada , Cristalografia por Raios X , Estabilidade Enzimática , Glicolatos/metabolismo , Cinética , Modelos Moleculares , Mutação , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise Espectral , Triose-Fosfato Isomerase/genética
7.
PLoS One ; 7(7): e40125, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22808104

RESUMO

Hunter-killer peptides combine two activities in a single polypeptide that work in an independent fashion like many other multi-functional, multi-domain proteins. We hypothesize that emergent functions may result from the combination of two or more activities in a single protein domain and that could be a mechanism selected in nature to form moonlighting proteins. We designed moonlighting peptides using the two mechanisms proposed to be involved in the evolution of such molecules (i.e., to mutate non-functional residues and the use of natively unfolded peptides). We observed that our moonlighting peptides exhibited two activities that together rendered a new function that induces cell death in yeast. Thus, we propose that moonlighting in proteins promotes emergent properties providing a further level of complexity in living organisms so far unappreciated.


Assuntos
Peptídeos/farmacologia , Sequência de Aminoácidos , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Testes de Sensibilidade Microbiana , Dilatação Mitocondrial/efeitos dos fármacos , Dados de Sequência Molecular , Peptídeos/química , Feromônios/farmacologia , Estrutura Secundária de Proteína , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos
8.
PLoS One ; 7(5): e38187, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22666479

RESUMO

The Arc two-component system modulates the expression of numerous genes in response to respiratory growth conditions. This system comprises ArcA as the response regulator and ArcB as the sensor kinase. ArcB is a tripartite histidine kinase whose activity is regulated by the oxidation of two cytosol-located redox-active cysteine residues that participate in intermolecular disulfide bond formation. Here, we report that the ArcB protein segment covering residues 70-121, fulfills the molecular characteristics of a leucine zipper containing coiled coil structure. Also, mutational analyses of this segment reveal three different phenotypical effects to be distributed along the coiled coil structure of ArcB, demonstrating that this motif is essential for proper ArcB signaling.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Zíper de Leucina , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Sequência de Aminoácidos , Escherichia coli/enzimologia , Proteínas de Escherichia coli/genética , Proteínas de Membrana/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Quinases/genética , Análise de Sequência
9.
Biochem J ; 439(3): 443-52, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21732915

RESUMO

PaBADH (Pseudomonas aeruginosa betaine aldehyde dehydrogenase) catalyses the irreversible NAD(P)+-dependent oxidation of betaine aldehyde to its corresponding acid, the osmoprotector glycine betaine. This reaction is involved in the catabolism of choline and in the response of this important pathogen to the osmotic and oxidative stresses prevalent in infection sites. The crystal structure of PaBADH in complex with NADPH showed a novel covalent adduct between the C2N of the pyridine ring and the sulfur atom of the catalytic cysteine residue, Cys286. This kind of adduct has not been reported previously either for a cysteine residue or for a low-molecular-mass thiol. The Michael addition of the cysteine thiolate in the 'resting' conformation to the double bond of the α,ß-unsaturated nicotinamide is facilitated by the particular conformation of NADPH in the active site of PaBADH (also observed in the crystal structure of the Cys286Ala mutant) and by an ordered water molecule hydrogen bonded to the carboxamide group. Reversible formation of NAD(P)H-Cys286 adducts in solution causes reversible enzyme inactivation as well as the loss of Cys286 reactivity towards thiol-specific reagents. This novel covalent modification may provide a physiologically relevant regulatory mechanism of the irreversible PaBADH-catalysed reaction, preventing deleterious decreases in the intracellular NAD(P)+/NAD(P)H ratios.


Assuntos
Proteínas de Bactérias/química , Betaína-Aldeído Desidrogenase/química , Cisteína/química , Adutos de DNA/química , NADP/química , Pseudomonas aeruginosa/enzimologia , Aldeído Desidrogenase/química , Aldeído Desidrogenase/genética , Proteínas de Bactérias/genética , Betaína-Aldeído Desidrogenase/genética , Domínio Catalítico/genética , Cristalografia por Raios X , Cisteína/genética , Adutos de DNA/genética , NADP/metabolismo , Pseudomonas aeruginosa/genética
10.
PLoS One ; 6(4): e18791, 2011 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-21533154

RESUMO

For a better comprehension of the structure-function relationship in proteins it is necessary to identify the amino acids that are relevant for measurable protein functions. Because of the numerous contacts that amino acids establish within proteins and the cooperative nature of their interactions, it is difficult to achieve this goal. Thus, the study of protein-ligand interactions is usually focused on local environmental structural differences. Here, using a pair of triosephosphate isomerase enzymes with extremely high homology from two different organisms, we demonstrate that the control of a seventy-fold difference in reactivity of the interface cysteine is located in several amino acids from two structurally unrelated regions that do not contact the cysteine sensitive to the sulfhydryl reagent methylmethane sulfonate, nor the residues in its immediate vicinity. The change in reactivity is due to an increase in the apparent pKa of the interface cysteine produced by the mutated residues. Our work, which involved grafting systematically portions of one protein into the other protein, revealed unsuspected and multisite long-range interactions that modulate the properties of the interface cysteines and has general implications for future studies on protein structure-function relationships.


Assuntos
Aminoácidos/química , Triose-Fosfato Isomerase/metabolismo , Trypanosoma/enzimologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Biocatálise , Primers do DNA , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Reação em Cadeia da Polimerase , Homologia de Sequência de Aminoácidos , Triose-Fosfato Isomerase/química , Triose-Fosfato Isomerase/genética
11.
Mol Cell ; 16(3): 375-86, 2004 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-15525511

RESUMO

The fidelity of aminoacylation of tRNA(Thr) by the threonyl-tRNA synthetase (ThrRS) requires the discrimination of the cognate substrate threonine from the noncognate serine. Misacylation by serine is corrected in a proofreading or editing step. An editing site has been located 39 A away from the aminoacylation site. We report the crystal structures of this editing domain in its apo form and in complex with the serine product, and with two nonhydrolyzable analogs of potential substrates: the terminal tRNA adenosine charged with serine, and seryl adenylate. The structures show how serine is recognized, and threonine rejected, and provide the structural basis for the editing mechanism, a water-mediated hydrolysis of the mischarged tRNA. When the adenylate analog binds in the editing site, a phosphate oxygen takes the place of one of the catalytic water molecules, thereby blocking the reaction. This rules out a correction mechanism that would occur before the binding of the amino acid on the tRNA.


Assuntos
Biossíntese de Proteínas , Edição de RNA , Treonina-tRNA Ligase/química , Sequência de Aminoácidos , Aminoacilação , Sítios de Ligação , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Hidrólise , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oxigênio/química , Fosfatos/química , RNA de Transferência de Serina/química , RNA de Transferência de Serina/metabolismo , RNA de Transferência de Treonina/química , RNA de Transferência de Treonina/metabolismo , Homologia de Sequência de Aminoácidos , Treonina-tRNA Ligase/genética , Treonina-tRNA Ligase/metabolismo
12.
J Mol Biol ; 331(1): 201-11, 2003 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12875846

RESUMO

The crystal structures of threonyl-tRNA synthetase (ThrRS) from Staphylococcus aureus, with ATP and an analogue of threonyl adenylate, are described. Together with the previously determined structures of Escherichia coli ThrRS with different substrates, they allow a comprehensive analysis of the effect of binding of all the substrates: threonine, ATP and tRNA. The tRNA, by inserting its acceptor arm between the N-terminal domain and the catalytic domain, causes a large rotation of the former. Within the catalytic domain, four regions surrounding the active site display significant conformational changes upon binding of the different substrates. The binding of threonine induces the movement of as much as 50 consecutive amino acid residues. The binding of ATP triggers a displacement, as large as 8A at some C(alpha) positions, of a strand-loop-strand region of the core beta-sheet. Two other regions move in a cooperative way upon binding of threonine or ATP: the motif 2 loop, which plays an essential role in the first step of the aminoacylation reaction, and the ordering loop, which closes on the active site cavity when the substrates are in place. The tRNA interacts with all four mobile regions, several residues initially bound to threonine or ATP switching to a position in which they can contact the tRNA. Three such conformational switches could be identified, each of them in a different mobile region. The structural analysis suggests that, while the small substrates can bind in any order, they must be in place before productive tRNA binding can occur.


Assuntos
Trifosfato de Adenosina/química , Domínio Catalítico , RNA de Transferência/química , Treonina-tRNA Ligase/química , Treonina/química , Trifosfato de Adenosina/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Proteínas de Bactérias/química , Sítios de Ligação , Cristalização , Escherichia coli/enzimologia , Estrutura Molecular , Movimento (Física) , Ligação Proteica , Conformação Proteica , RNA de Transferência/metabolismo , Staphylococcus aureus/enzimologia , Treonina/metabolismo , Treonina-tRNA Ligase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA