Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Foods ; 11(15)2022 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-35954130

RESUMO

Seeds from non-drug varieties of hemp (Cannabis sativa L.) have been used for traditional medicine, food, and fiber production. Our study shows that phytol obtained from hemp seed oil (HSO) exerts anti-inflammatory activity in human monocyte-macrophages. Fresh human monocytes and human macrophages derived from circulating monocytes were used to evaluate both plasticity and anti-inflammatory effects of phytol from HSO at 10-100 mM using FACS analysis, ELISA, and RT-qPCR methods. The quantitative study of the acyclic alcohol fraction isolated from HSO shows that phytol is the most abundant component (167.59 ± 1.81 mg/Kg of HSO). Phytol was able to skew monocyte-macrophage plasticity toward the anti-inflammatory non-classical CD14+CD16++ monocyte phenotype and toward macrophage M2 (CD200Rhigh and MRC-1high), as well as to reduce the production of IL-1ß, IL-6, and TNF-α, diminishing the inflammatory competence of mature human macrophages after lipopolysaccharide (LPS) treatment. These findings point out for the first time the reprogramming and anti-inflammatory activity of phytol in human monocyte-macrophages. In addition, our study may help to understand the mechanisms by which phytol from HSO contributes to the constant and progressive plasticity of the human monocyte-macrophage linage.

2.
Foods ; 11(5)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35267256

RESUMO

Chia (Salvia hispanica L.) seed has high potential in the development of functional food due to its protein content with a special amino acid profile. Among the hematopoietic-derived cells, monocytes are endowed with high plasticity, responsible for their pro- and anti-inflammatory function in M1 and M2 phenotype polarization, respectively. Indeed, monocytes are involved in several oxidative- and inflammatory-associated disorders such as cancer, obesity, and cardiovascular and neurodegenerative diseases. This study was designed to investigate the role of chia protein hydrolysates (CPHs) in primary human monocyte-macrophage plasticity response using biochemical, RT-qPCR, and ELISA assays. Our results showed that CPHs reduce ROS and nitrite output, as pro-inflammatory cytokine secretion, and enhance the expression and release of anti-inflammatory cytokines. In addition, CPHs reverse LPS-associated M1 polarization into M2. These findings open new opportunities for developing nutritional strategies with chia as a dietary source of biopeptides to prevent the development and progression of oxidative- and inflammatory-related diseases.

3.
Nutr Neurosci ; 25(3): 472-484, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32401697

RESUMO

OBJECTIVES: Neuroinflammation is a complex inflammatory process in the central nervous system (CNS) where microglia may play a critical role. GPETAFLR is a peptide isolated from Lupinus angustifolius L. protein hydrolysates with functional activity in mononuclear phagocytes. However, it is unknown whether GPETAFLR has neuroprotective effects. METHODS: We analysed the potential anti-neuroinflammatory activity of GPETAFLR by using two different models of neuroinflammation: BV-2 microglial cells and mice with high-fat diet (HFD)-induced obesity. RESULTS: GPETAFLR hampered LPS-induced upregulation of pro-inflammatory and M1 marker genes in BV-2 cells. This effect was accompanied by an unchanged expression of anti-inflammatory IL-10 gene and by an increased expression of M2 marker genes. GPETAFLR also increased the transcriptional activity of M2 marker genes, while the microglia population remained unchanged in number and M1/M2 status in brain of mice with high-fat diet (HFD)-induced obesity. Furthermore, GPETAFLR counteracted HFD-induced downregulation of IL-10 and upregulation of pro-inflammatory markers in the mouse brain, both at gene and protein levels. DISCUSSION: This is the first report describing that a peptide from plant origin robustly restrained the pro-inflammatory activation of microglial cells in cultures and in brain. Our data suggest that GPETAFLR might be instrumental in maintaining CNS homeostasis by inhibiting neuroinflammation.


Assuntos
Lupinus , Microglia , Animais , Encéfalo/metabolismo , Citocinas/metabolismo , Inflamação/induzido quimicamente , Lipopolissacarídeos/farmacologia , Lupinus/metabolismo , Camundongos , Neuroproteção , Peptídeos
4.
Biomolecules ; 10(5)2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32456009

RESUMO

Hemp seeds have a wide variety of chemical compounds which present biological activity. Specifically, the focus on proteins and bioactive peptides are increasing as alternative sources of nutraceutical uses. In the literature, hemp protein products (HPPs) have reported antioxidant and anti-inflammatory properties. This study aimed to determine the inflammation-related modulatory effects of HPPs on lipopolysaccharide (LPS)-activated primary human monocytes. CD14+ cells were immunomagnetically isolated from buffy coats and the anti-inflammatory activity of hemp protein isolate (HPI) and hydrolysates (HPHs) was evaluated on LPS-stimulated human primary monocytes. The specific markers of inflammation, polarization, and chemoattraction were measured by RT-qPCR and ELISA assays. Our results showed that HPPs decreased the pro-inflammatory mediators (TNFα, IL-1ß, and IL-6) and increased the anti-inflammatory mediators (IL-10 and IL-4). In addition, M1 polarization marker gene expression (CCR7 and iNOS) was downregulated by HPPs and, M2 polarization marker gene expression (CD200R and MRC1) was upregulated. Finally, the mRNA expression of chemotaxis genes (CCR2 and CCL2) was downregulated by HPPs. In conclusion, this study suggests that HPPs may improve chronic inflammatory states and promote regenerative processes by reprogramming monocytes toward M2 polarization phenotype.


Assuntos
Anti-Inflamatórios/farmacologia , Cannabis/química , Monócitos/efeitos dos fármacos , Proteínas de Plantas/farmacologia , Hidrolisados de Proteína/farmacologia , Células Cultivadas , Quimiocina CCL2/metabolismo , Humanos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/toxicidade , Monócitos/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Receptores de Orexina/metabolismo , Receptores CCR7/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
5.
Food Funct ; 10(10): 6732-6739, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31576391

RESUMO

Hemp (Cannabis sativa L.) seeds are well known for their potential use as a source of nutrients, fiber, and bioactive compounds. A hemp protein isolate, prepared from defatted hemp flour, was hydrolyzed by alcalase and flavourzyme under specific conditions. The resulting hydrolysates were evaluated for the selection of potentially bioactive hemp protein hydrolysates (HPHs) owing to their DPPH scavenging and ferric reducing antioxidant power activity. In vitro cell-free experiments led to the identification of two bioactive HPHs, HPH20A and HPH60A + 15AF, which were used at 50 and 100 µg mL-1 on BV-2 microglial cells in order to evaluate the anti-neuroinflammatory activities. Our results showed that HPH20A and HPH60A + 15AF down-regulated TNF-α, IL-1ß, and IL-6 mRNA transcriptional levels in LPS-stimulated BV-2 microglial cells. In addition, HPH20A and HPH60A + 15AF up-regulated the gene expression of anti-inflammatory cytokine IL-10. This study suggests for the first time that HPHs may improve the neuroinflammatory and inflammatory states, supporting the nutraceutical value of hemp seeds.


Assuntos
Antioxidantes/farmacologia , Cannabis/química , Fármacos Neuroprotetores/farmacologia , Hidrolisados de Proteína/farmacologia , Sementes/química , Aminoácidos/análise , Animais , Antioxidantes/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Suplementos Nutricionais/análise , Endopeptidases/metabolismo , Farinha/análise , Regulação da Expressão Gênica , Hidrólise , Interleucina-10/genética , Interleucina-10/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Camundongos , Microglia/citologia , Microglia/metabolismo , Fármacos Neuroprotetores/química , Proteínas de Plantas/química , Proteínas de Plantas/farmacologia , Hidrolisados de Proteína/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Subtilisinas/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
6.
J Food Biochem ; 43(8): e12941, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31368572

RESUMO

We have analyzed the effects of minor compounds found in the unsaponifiable fraction (UF) and in the phenolic fraction (PF) of virgin olive oil (VOO) on LPS-induced inflammatory response via visfatin modulation in human monocytes. For this purpose, monocytes were incubated with UF and PF at different concentrations and the pro-inflammatory stimulus LPS for 24 hr; squalene (SQ) and hydroxytyrosol (HTyr), the main components in UF and PF, respectively, were also used. The relative expression of both pro-inflammatory and anti-inflammatory genes, as well as other genes related to the NAD+-biosynthetic pathway was evaluated by RT-qPCR; and the secretion of some of these markers was assessed by ELISA procedures. We found that UF, SQ, PF, and HTyr prevented from LPS-induced dysfunctional gene expression and secretion via visfatin-related gene modulation in human monocytes. These findings unveil a potential beneficial role for minor compounds of VOO in the prevention of inflammatory-disorders. PRACTICAL APPLICATION: In this project, potential health benefits of VOO micronutrients (unsaponifiable and phenolic compounds) were confirmed through anti-inflammatory assays. Our results reveal new interesting researching goals concerning nutrition by considering the role of bioactive VOO compounds in the prevention and progress of diseases related to inflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Inflamação/enzimologia , Monócitos/efeitos dos fármacos , Nicotinamida Fosforribosiltransferase/imunologia , Azeite de Oliva/química , Células Cultivadas , Humanos , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/imunologia , Lipopolissacarídeos/efeitos adversos , Lipopolissacarídeos/imunologia , Monócitos/imunologia , Nicotinamida Fosforribosiltransferase/genética , Fenóis/análise , Fenóis/farmacologia
7.
Food Funct ; 10(6): 3303-3311, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31094410

RESUMO

The present study aimed to test the mechanisms by which GPETAFLR, released from the enzymatic hydrolysis of lupine protein, may modulate the inflammatory response and plasticity in human primary monocytes. Human circulating monocytes and mature macrophages were used to analyze the effects of GPETAFLR on plasticity and inflammatory response using biochemical, flow cytometry, quantitative real-time PCR, and ELISA assays. GPETAFLR skewed the monocyte plasticity towards the anti-inflammatory non-classical CD14+CD16++ monocyte subset and reduced the inflammatory competence of LPS-treated human monocytes diminishing IL-1ß, IL-6, and TNF-α and increasing IL-10 production and gene expression. Results showed that GPETAFLR decreased the frequency of the LPS-induced activated monocyte population (CD14++CD16-), diminished monocyte activation involved down-regulation of CCR2 mRNA expression and protein expression, and decreased gene expression of the LPS-induced chemoattractant mediator CCL2. Our findings imply a new understanding of the mechanisms by which GPETAFLR favor a continuous and gradual plasticity process in the human monocyte/macrophage system and offer novel benefits derived from the consumption of Lupinus angustifolius L. in the prevention of inflammatory-related diseases.


Assuntos
Lupinus/química , Monócitos/efeitos dos fármacos , Peptídeos/farmacologia , Proteínas de Plantas/química , Humanos , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Monócitos/imunologia , Peptídeos/química , Peptídeos/isolamento & purificação , Hidrolisados de Proteína/química , Receptores CCR2/genética , Receptores CCR2/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA