Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Blood ; 94(4): 1382-92, 1999 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-10438726

RESUMO

CD22 is a B-cell-specific adhesion molecule that modulates BCR-mediated signal transduction. Ligation of human CD22 with monoclonal antibodies (MoAbs) that block the ligand binding site triggers rapid tyrosine phosphorylation of CD22 and primary B-cell proliferation. Because extracellular signal-regulated kinases (ERKs) couple upstream signaling pathways to gene activation and are activated by B-cell antigen receptor (BCR) signaling, we examined whether CD22 ligation also activated ERKs and/or modified BCR-induced ERK activation. Ligation of CD22 on either primary B cells or B-cell lines failed to significantly activate the mitogen activated protein kinase (MAPK) ERK-2, but did activate the stress-activated protein kinases (SAPKs; c-jun NH2-terminal kinases or JNKs). In contrast, BCR ligation resulted in ERK-2 activation without significant SAPK activation. Concurrent ligation of CD22 and BCR enhanced BCR-mediated ERK-2 activation without appreciably modulating CD22-induced SAPK activation. Consistent with its induction of SAPK activity, there was a marked increase in nuclear extracts of activator protein-1 (AP-1) and c-jun levels within 2 hours of exposure of primary B cells to the CD22 MoAb. Despite their differences in ERK activation, both CD22 and BCR ligation triggered several Burkitt lymphoma cell lines to undergo apoptosis, and the 2 stimuli together induced greater cell death than either signal alone. The pro-apoptotic effects were CD22-blocking MoAb-specific and dose-dependent. Examination of expression levels of Bcl-2 protoncogene family members (Bcl-2, Bcl-x(L), Mcl-1, and Bax) showed a downregulation of Bcl-x(L) and Mcl-1 after CD22 ligation. This study provides a plausible mechanism to explain how CD22 and BCR signaling can costimulate B-cell proliferation and induce apoptosis in Burkitt lymphoma cell lines.


Assuntos
Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos B/imunologia , Linfócitos B/imunologia , Moléculas de Adesão Celular , Lectinas , Proteínas Quinases/imunologia , Transdução de Sinais/imunologia , Células Cultivadas , Humanos , Ativação Linfocitária/imunologia , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico
2.
J Urol ; 159(6): 1979-82; discussion 1982-3, 1998 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-9598502

RESUMO

PURPOSE: Tumor grade, deoxyribonucleic acid (DNA) ploidy, proliferation, p53 and bcl-2 expression were examined in clinically localized prostate cancers of black and white American men to learn whether these features showed racial differences. MATERIALS AND METHODS: A total of 117 prostate cancers (43 black and 74 white patients) obtained at radical prostatectomy for clinically localized disease were assigned Gleason scores by a single pathologist. Enzymatically dissociated nuclei from archival prostate cancers were examined by DNA flow cytometry using propidium iodide staining and the multicycle program to remove debris and sliced nuclei and to perform cell cycle analysis. For immunostaining after microwave antigen retrieval we used a DO-1/DO-7 monoclonal antibody cocktail for p53 and the clone 124 antibody for bcl-2. RESULTS: Significantly more black than white men had Gleason score 7 tumors. The DNA ploidy distribution of Gleason 6 or less tumors was similar for both races. As anticipated, the ploidy distribution of higher grade prostate cancer in white men was more abnormal but, unexpectedly, this was not found for higher grade prostate cancer in black men. No significant racial differences were found in S phase fractions, p53 or bcl-2 immunopositivity. However, for prostate cancer in black men there was a significant association between bcl-2 immunopositivity and higher S-phase fractions. CONCLUSIONS: The aggressive prostate cancers of black men may be characterized by the 2 features of high proliferation and a block to programmed cell death.


Assuntos
Biomarcadores Tumorais , População Negra/genética , Genes bcl-2 , Genes p53 , Neoplasias da Próstata/genética , População Branca/genética , Apoptose , Divisão Celular , DNA de Neoplasias/genética , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Masculino , Ploidias , Prognóstico , Neoplasias da Próstata/etnologia , Neoplasias da Próstata/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA