Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Drug Metab Pharmacokinet ; 56: 101020, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38797089

RESUMO

Quantitative Systems Pharmacology (QSP) has emerged as a promising modeling and simulation (M&S) approach in drug development, with potential to improve clinical success rates. While conventional M&S has significantly contributed to quantitative understanding in late preclinical and clinical phases, it falls short in explaining unexpected phenomena and testing hypotheses in the early research phase. QSP presents a solution to these limitations. To harness the full potential of QSP in early preclinical stages, preclinical modelers who are familiar with conventional M&S need to update their understanding of the differences between conventional M&S and QSP. This review focuses on QSP applications during the preclinical stage, citing case examples and sharing our experiences in oncology. We emphasize the critical role of QSP in increasing the probability of success for clinical proof of concept (PoC) when applied from the early preclinical stage. Enhancing the quality of both hypotheses and QSP models from early preclinical stage is of critical importance. Once a QSP model achieves credibility, it facilitates predictions of clinical responses and potential biomarkers. We propose that sequential QSP applications from preclinical stages can improve success rates of clinical PoC, and emphasize the importance of refining both hypotheses and QSP models throughout the process.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Humanos , Animais , Avaliação Pré-Clínica de Medicamentos/métodos , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Farmacologia em Rede , Desenvolvimento de Medicamentos/métodos , Modelos Biológicos , Simulação por Computador
2.
J Pharm Sci ; 110(1): 517-528, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33058894

RESUMO

Pemafibrate (PMF) is highly albumin-bound (>99.8%) and a substrate for hepatic uptake transporters (OATP1B) and CYP enzymes. Here, we developed a PBPK model of PMF to capture drug-drug interactions (DDI) incurred by cyclosporine (CsA) and rifampicin (RIF), the two OATP1B inhibitors. Initial PBPK modeling of PMF utilized in vitro hepatic uptake clearance (PSinf) obtained in the absence of albumin, but failed in capturing the blood PMF pharmacokinetic (PK) profiles. Based on the results that in vitro PSinf of unbound PMF was enhanced in the presence of albumin, we applied the albumin-facilitated dissociation model and the resulting PSinf parameters improved the prediction of the blood PMF PK profiles. In refining our PBPK model toward improved prediction of the observed DDI data (PMF co-administered with single dosing of CsA or RIF; PMF following multiple RIF dosing), we adjusted the previously obtained in vivo OATP1B inhibition constants (Ki,OATP1B) of CsA or RIF for pitavastatin by correcting for substrate-dependency. We also incorporated the induction of OATP1B and CYP enzymes after multiple RIF dosing. Sensitivity analysis informed that the higher gastrointestinal absorption rate constant could further improve capturing the observed DDI data, suggesting the possible inhibition of intestinal ABC transporter(s) by CsA or RIF.


Assuntos
Preparações Farmacêuticas , Rifampina , Albuminas , Benzoxazóis , Butiratos , Ciclosporina , Interações Medicamentosas , Modelos Biológicos
3.
J Pharm Sci ; 110(1): 376-387, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33122051

RESUMO

Hepatic uptake clearance has been measured in suspended human hepatocytes (SHH). Plated human hepatocytes (PHH) after short-term culturing are increasingly employed to study hepatic transport driven mainly by its higher throughput. To know pros/cons of both systems, the hepatic uptake clearances of several organic anion transporting polypeptide 1B substrates were compared between PHH and SHH by determining the initial uptake velocities or through dynamic model-based analyses. For cerivastatin, pitavastatin and rosuvastatin, initial uptake clearances (PSinf) obtained using PHH were comparable to those using SHH, while cell-to-medium concentration (C/M) ratios were 2.7- to 5.4-fold higher. For pravastatin and dehydropravastatin, hydrophilic compounds with low uptake/cellular binding, their PSinf and C/M ratio in PHH were 1.8- to 3.2-fold lower than those in SHH. These hydrophilic substrates are more prone to wash-off during the uptake study using PHH, which may explain the apparently lower uptake than SHH. The C/M ratios obtained using PHH were stable over an extended time, making PHH suitable to estimate the C/M ratios and hepatocyte-to-medium unbound concentration ratios (Kp,uu). In conclusion, PHH is useful in evaluating hepatic uptake/efflux clearances and Kp,uu of OATP1B substrates in a high-throughput manner, however, a caution is warranted for hydrophilic drugs with low uptake/cellular binding.


Assuntos
Hepatócitos , Transportadores de Ânions Orgânicos , Transporte Biológico , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Pravastatina/metabolismo
4.
Eur J Pharm Sci ; 125: 181-192, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30287410

RESUMO

The antidiabetic drugs glibenclamide, repaglinide, and nateglinide are well-known substrates for hepatic uptake transporters of the organic anion transporting polypeptide (OATP) family and metabolizing enzymes of the cytochrome P450 (CYP) 2C subfamily. The systemic exposure of these drugs varies substantially among individuals, impacted by genetic polymorphisms of transporters and metabolizing enzymes as well as drug-drug interactions. The use of the conventional in vitro-in vivo extrapolation (IVIVE) method was found to underestimate their hepatic intrinsic clearance (CLint,all); the clinically observed CLint,all values were ≥10-fold higher than the predicted values from in vitro data. In order to improve the accuracy in predicting CLint,all of these drugs, the following modifications were implemented; i) the extended clearance concept was applied during IVIVE processes, ii) albumin was added to metabolic assays using human liver microsomes (to minimize the impact of intrinsic inhibitors on kinetic parameters for CYP2C-mediated metabolism) and to hepatic uptake assays (to accommodate the enhanced hepatic uptake observed with albumin-bound drugs), and iii) differing rates of efflux and influx via diffusion were used. The IVIVE method with these modifications yielded the predicted CLint,all values from in vitro data in closer agreement with the CLint,all values observed in vivo; the fold differences between the predicted and observed CLint,all values reduced from 13-15 to 5.9-6.7. Our current approach offers an improvement in the prediction of CLint,all and further investigations are warranted to enhance the prediction accuracy of IVIVE.


Assuntos
Albuminas/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Hipoglicemiantes/farmacocinética , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Fígado/metabolismo , Modelos Biológicos , Carbamatos/farmacocinética , Glibureto/farmacocinética , Células HEK293 , Hepatócitos/metabolismo , Humanos , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Taxa de Depuração Metabólica , Microssomos Hepáticos/metabolismo , Nateglinida/farmacocinética , Piperidinas/farmacocinética , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/genética , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/metabolismo
5.
CPT Pharmacometrics Syst Pharmacol ; 7(11): 739-747, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30175555

RESUMO

The aim of the present study was to establish a physiologically based pharmacokinetic (PBPK) model for coproporphyrin I (CP-I), a biomarker supporting the prediction of drug-drug interactions (DDIs) involving hepatic organic anion transporting polypeptide 1B (OATP1B), using clinical DDI data with an OATP1B inhibitor rifampicin (300 and 600 mg, orally). The in vivo inhibition constants of rifampicin used as initial input parameters for OATP1Bs (Ki,u,OATP1Bs ) and multidrug resistance-associated protein two-mediated biliary excretion were estimated as 0.23 and 0.87 µM, respectively, from previous reports. Sensitivity analysis demonstrated that the Ki,u,OATP1Bs and biosynthesis rate of CP-I affected the magnitude of the interaction. Ki,u,OATP1Bs values optimized by nonlinear least-squares fitting were ~0.5-fold of the initial value. It was determined that the blood concentration-time profiles of four statins were well-predicted using corrected individual Ki,u,OATP1B values (ratio of in vitro Ki,u(statin) /in vitro Ki,u(CP-I) ). In conclusion, PBPK modeling of CP-I supports dynamic prediction of OATP1B-mediated DDIs.


Assuntos
Coproporfirinas/farmacologia , Coproporfirinas/farmacocinética , Interações Medicamentosas , Transportador 1 de Ânion Orgânico Específico do Fígado/antagonistas & inibidores , Fígado/metabolismo , Modelos Biológicos , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/antagonistas & inibidores , Área Sob a Curva , Biomarcadores/sangue , Biomarcadores/metabolismo , Coproporfirinas/sangue , Humanos
6.
CPT Pharmacometrics Syst Pharmacol ; 7(7): 474-482, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29920987

RESUMO

The Tamoxifen Response by CYP2D6 Genotype-based Treatment-1 (TARGET-1) study (n = 180) was conducted from 2012-2017 in Japan to determine the efficacy of tamoxifen dosing guided by cytochrome P450 2D6 (CYP2D6) genotypes. To predict its outcomes prior to completion, we constructed the comprehensive physiologically based pharmacokinetic (PBPK) models of tamoxifen and its metabolites and performed virtual TARGET-1 studies. Our analyses indicated that the expected probability to achieve the end point (demonstrating the superior efficacy of the escalated tamoxifen dose over the standard dose in patients carrying CYP2D6 variants) was 0.469 on average. As the population size of this virtual clinical study (VCS) increased, the expected probability was substantially increased (0.674 for n = 260). Our analyses also informed that the probability to achieve the end point in the TARGET-1 study was negatively impacted by a large variability in endoxifen levels. Our current efforts demonstrate the promising utility of the PBPK modeling and VCS approaches in prospectively designing effective clinical trials.


Assuntos
Antineoplásicos Hormonais/administração & dosagem , Citocromo P-450 CYP2D6/genética , Genótipo , Modelos Biológicos , Tamoxifeno/administração & dosagem , Antineoplásicos Hormonais/farmacocinética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Feminino , Humanos , Pós-Menopausa , Probabilidade , Estudos Prospectivos , Receptores de Estrogênio/metabolismo , Tamoxifeno/farmacocinética , Tamoxifeno/farmacologia
7.
Drug Metab Dispos ; 46(7): 924-933, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29712725

RESUMO

Cerivastatin (CER) was withdrawn from the world market because of lethal rhabdomyolysis. Coadministrations of CER and cyclosporine A (CsA) or gemfibrozil (GEM) have been reported to increase the CER blood concentration. CsA is an inhibitor of organic anion transporting polypeptide (OATP)1B1 and CYP3A4, and GEM and its glucuronide (GEM-glu) inhibit OATP1B1 and CYP2C8. The purpose of this study was to describe the transporter-/enzyme-mediated drug-drug interactions (DDIs) of CER with CsA or GEM based on unified physiologically based pharmacokinetic (PBPK) models and to investigate whether the DDIs can be quantitatively analyzed by a bottom-up approach. Initially, the PBPK models for CER and GEM/GEM-glu were constructed based on the previously reported standard protocols. Next, the drug-dependent parameters were optimized by Cluster Newton Method. Thus, described concentration-time profiles for CER and GEM/GEM-glu agreed well with the clinically observed data. The DDIs were then simulated using the established PBPK models with previously obtained in vitro inhibition constants of CsA or GEM/GEM-glu against the OATP1B1 and cytochrome P450s. DDIs with the inhibitors were underestimated compared with observed data using the geometric means of reported values. To search for better described parameters within the range of in vitro values, sensitivity analyses were performed for DDIs of CER. Using the in vitro parameter sets selected by sensitivity analyses, these DDIs were well reproduced, indicating that the present PBPK models were able to describe adequately the clinical DDIs based on a bottom-up approach. The approaches in this study would be applicable to the prediction of other DDIs involving both transporters and metabolic enzymes.


Assuntos
Transporte Biológico/fisiologia , Interações Medicamentosas/fisiologia , Piridinas/farmacocinética , Ciclosporina/farmacocinética , Citocromo P-450 CYP2C8/metabolismo , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Genfibrozila/farmacocinética , Glucuronídeos/farmacocinética , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Modelos Biológicos
8.
Drug Metab Dispos ; 46(5): 749-757, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29440178

RESUMO

Polymorphism c.421C>A in the ABCG2 gene is thought to reduce the activity of breast cancer resistance protein (BCRP), a xenobiotic transporter, although it is not clear which organ(s) contributes to the polymorphism-associated pharmacokinetic change. The aim of the present study was to estimate quantitatively the influence of c.421C>A on intestinal and hepatic BCRP activity using a physiologically based pharmacokinetic (PBPK) model of rosuvastatin developed from clinical data and several in vitro studies. Simultaneous fitting of clinical data for orally and intravenously administered rosuvastatin, obtained in human subjects without genotype information, was first performed with the PBPK model to estimate intrinsic clearance for hepatic elementary process. The fraction of BCRP activity in 421CA and 421AA (fca and faa values, respectively) with respect to that in 421CC subjects was then estimated based on extended clearance concepts and simultaneous fitting to oral administration data for the three genotypes (421CC, 421CA, and 421AA). On the assumption that c.421C>A affects both intestinal and hepatic BCRP, clinical data in each genotype were well reproduced by the model, and the estimated terminal half-life was compatible with the observed values. The assumption that c.421C>A affects only either intestinal or hepatic BCRP gave poorer agreement with observed values. The faa values obtained on the former assumption were 0.48-0.54. Thus, PBPK model analysis enabled quantitative evaluation of alteration in BCRP activity owing to c.421C>A, and BCRP activity in 421AA was estimated as half that in 421CC.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Mucosa Intestinal/metabolismo , Fígado/metabolismo , Proteínas de Neoplasias/genética , Polimorfismo Genético/genética , Rosuvastatina Cálcica/farmacocinética , Células CACO-2 , Linhagem Celular , Genótipo , Meia-Vida , Humanos
9.
Drug Metab Dispos ; 46(5): 740-748, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29475833

RESUMO

Bosentan is a substrate of hepatic uptake transporter organic anion-transporting polypeptides (OATPs), and undergoes extensive hepatic metabolism by cytochrome P450 (P450), namely, CYP3A4 and CYP2C9. Several clinical investigations have reported a nonlinear relationship between bosentan doses and its systemic exposure, which likely involves the saturation of OATP-mediated uptake, P450-mediated metabolism, or both in the liver. Yet, the underlying causes for the nonlinear bosentan pharmacokinetics are not fully delineated. To address this, we performed physiologically based pharmacokinetic (PBPK) modeling analyses for bosentan after its intravenous administration at different doses. As a bottom-up approach, PBPK modeling analyses were performed using in vitro kinetic parameters, other relevant parameters, and scaling factors. As top-down approaches, three different types of PBPK models that incorporate the saturation of hepatic uptake, metabolism, or both were compared. The prediction from the bottom-up approach (models 1 and 2) yielded blood bosentan concentration-time profiles and their systemic clearance values that were not in good agreement with the clinically observed data. From top-down approaches (models 3, 4, 5-1, and 5-2), the prediction accuracy was best only with the incorporation of the saturable hepatic uptake for bosentan. Taken together, the PBPK models for bosentan were successfully established, and the comparison of different PBPK models identified the saturation of the hepatic uptake process as a major contributing factor for the nonlinear pharmacokinetics of bosentan.


Assuntos
Fígado/metabolismo , Sulfonamidas/metabolismo , Transporte Biológico/fisiologia , Bosentana , Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP3A/metabolismo , Hepatócitos/metabolismo , Humanos , Modelos Biológicos , Transportadores de Ânions Orgânicos/metabolismo , Distribuição Tecidual/fisiologia
10.
CPT Pharmacometrics Syst Pharmacol ; 7(3): 186-196, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29368402

RESUMO

This study aimed to construct a physiologically based pharmacokinetic (PBPK) model of rifampicin that can accurately and quantitatively predict complex drug-drug interactions (DDIs) involving its saturable hepatic uptake and auto-induction. Using in silico and in vitro parameters, and reported clinical pharmacokinetic data, rifampicin PBPK model was built and relevant parameters for saturable hepatic uptake and UDP-glucuronosyltransferase (UGT) auto-induction were optimized by fitting. The parameters for cytochrome P450 (CYP) 3A and CYP2C9 induction by rifampicin were similarly optimized using clinical DDI data with midazolam and tolbutamide as probe substrates, respectively. For validation, our current PBPK model was applied to simulate complex DDIs with glibenclamide (a substrate of CYP3A/2C9 and hepatic organic anion transporting polypeptides (OATPs)). Simulated results were in quite good accordance with the observed data. Altogether, our constructed PBPK model of rifampicin demonstrates the robustness and utility in quantitatively predicting CYP3A/2C9 induction-mediated and/or OATP inhibition-mediated DDIs with victim drugs.


Assuntos
Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP3A/metabolismo , Rifampina/farmacocinética , Simulação por Computador , Interações Medicamentosas , Indução Enzimática/efeitos dos fármacos , Glucuronosiltransferase/metabolismo , Glibureto/farmacocinética , Glibureto/farmacologia , Humanos , Modelos Biológicos , Rifampina/farmacologia
11.
Drug Metab Dispos ; 45(7): 779-789, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28468836

RESUMO

It is essential to estimate concentrations of unbound drugs inside the hepatocytes to predict hepatic clearance, efficacy, and toxicity of the drugs. The present study was undertaken to compare predictability of the unbound hepatocyte-to-medium concentration ratios (Kp,uu) by two methods based on the steady-state cell-to-medium total concentration ratios at 37°C and on ice (Kp,uu,ss) and based on their initial uptake rates (Kp,uu,V0). Poorly metabolized statins were used as test drugs because of their concentrative uptake via organic anion-transporting polypeptides. Kp,uu,ss values of these statins provided less interexperimental variation than the Kp,uu,V0 values, because only data at longer time are required for Kp,uu,ss Kp,uu,V0 values for pitavastatin, rosuvastatin, and pravastatin were 1.2- to 5.1-fold Kp,uu,ss in rat hepatocytes; Kp,uu,V0 values in human hepatocytes also tended to be larger than corresponding Kp,uu,ss To explain these discrepancies, theoretical values of Kp,uu,ss and Kp,uu,V0 were compared with true Kp,uu (Kp,uu,true), considering the inside-negative membrane potential and ionization of the drugs in hepatocytes and medium. Membrane potentials were approximately -30 mV in human hepatocytes at 37°C and almost abolished on ice. Theoretical equations considering the membrane potentials indicate that Kp,uu,ss values for the statins are 0.85- to 1.2-fold Kp,uu,true, whereas Kp,uu,V0 values are 2.2- to 3.1-fold Kp,uu,true, depending on the ratio of the passive permeability of the ionized to nonionized forms. In conclusion, Kp,uu,ss values of anions are similar to Kp,uu,true when the inside-negative membrane potential is considered. This suggests that Kp,uu,ss is preferable for estimating the concentration of unbound drugs inside the hepatocytes.


Assuntos
Hepatócitos/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Animais , Transporte Biológico/fisiologia , Humanos , Fígado/metabolismo , Masculino , Potenciais da Membrana/fisiologia , Transportadores de Ânions Orgânicos/metabolismo , Permeabilidade , Pravastatina/metabolismo , Quinolinas/metabolismo , Ratos , Ratos Sprague-Dawley , Rosuvastatina Cálcica/metabolismo
12.
J Pharm Sci ; 106(9): 2704-2714, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28465151

RESUMO

The cause of nonlinear pharmacokinetics (PK) (more than dose-proportional increase in exposure) of a urea derivative under development (compound A: anionic compound [pKa: 4.4]; LogP: 6.5; and plasma protein binding: 99.95%) observed in a clinical trial was investigated. Compound A was metabolized by CYP3A4, UGT1A1, and UGT1A3 with unbound Km of 3.3-17.8 µmol/L. OATP1B3-mediated uptake of compound A determined in the presence of human serum albumin (HSA) showed that unbound Km and Vmax decreased with increased HSA concentration. A greater decrease in unbound Km than in Vmax resulted in increased uptake clearance (Vmax/unbound Km) with increased HSA concentration, the so-called albumin-mediated uptake. At 2% HSA concentration, unbound Km was 0.00657 µmol/L. A physiologically based PK model assuming saturable hepatic uptake nearly replicated clinical PK of compound A. Unbound Km for hepatic uptake estimated from the model was 0.000767 µmol/L, lower than the in vitro unbound Km at 2% HSA concentration, whereas decreased Km with increased concentration of HSA in vitro indicated lower Km at physiological HSA concentration (4%-5%). In addition, unbound Km values for metabolizing enzymes were much higher than unbound Km for OATP1B3, indicating that the nonlinear PK of compound A is primarily attributed to saturated OATP1B3-mediated hepatic uptake of compound A.


Assuntos
Fígado/metabolismo , Albumina Sérica Humana/metabolismo , Ureia/análogos & derivados , Ureia/farmacocinética , Adulto , Disponibilidade Biológica , Transporte Biológico , Simulação por Computador , Citocromo P-450 CYP3A/metabolismo , Feminino , Glucuronosiltransferase/metabolismo , Humanos , Masculino , Modelos Biológicos , Ligação Proteica , Ureia/metabolismo
14.
J Pharm Sci ; 106(9): 2715-2726, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28479356

RESUMO

Quantitative analysis of transporter- and enzyme-mediated complex drug-drug interactions (DDIs) is challenging. Repaglinide (RPG) is transported into the liver by OATP1B1 and then is metabolized by CYP2C8 and CYP3A4. The purpose of this study was to describe the complex DDIs of RPG quantitatively based on unified physiologically based pharmacokinetic (PBPK) models using in vitro Ki values for OATP1B1, CYP3A4, and CYP2C8. Cyclosporin A (CsA) or gemfibrozil (GEM) increased the blood concentrations of RPG. The time profiles of RPG and the inhibitors were analyzed by PBPK models, considering the inhibition of OATP1B1 and CYP3A4 by CsA or OATP1B1 inhibition by GEM and its glucuronide and the mechanism-based inhibition of CYP2C8 by GEM glucuronide. RPG-CsA interaction was closely predicted using a reported in vitro Ki,OATP1B1 value in the presence of CsA preincubation. RPG-GEM interaction was underestimated compared with observed data, but the simulation was improved with the increase of fm,CYP2C8. These results based on in vitro Ki values for transport and metabolism suggest the possibility of a bottom-up approach with in vitro inhibition data for the prediction of complex DDIs using unified PBPK models and in vitro fm value of a substrate for multiple enzymes should be considered carefully for the prediction.


Assuntos
Carbamatos/sangue , Ciclosporina/farmacologia , Inibidores Enzimáticos/farmacologia , Genfibrozila/farmacologia , Hipoglicemiantes/sangue , Piperidinas/sangue , Transporte Biológico/efeitos dos fármacos , Carbamatos/metabolismo , Carbamatos/farmacologia , Simulação por Computador , Citocromo P-450 CYP2C8/metabolismo , Inibidores do Citocromo P-450 CYP2C8/farmacologia , Citocromo P-450 CYP3A/metabolismo , Interações Medicamentosas , Humanos , Hipoglicemiantes/metabolismo , Hipoglicemiantes/farmacologia , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Modelos Biológicos , Piperidinas/metabolismo , Piperidinas/farmacologia
15.
Pharm Res ; 34(8): 1584-1600, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28397089

RESUMO

PURPOSE: To establish a physiologically-based pharmacokinetic (PBPK) model for analyzing the factors associated with side effects of irinotecan by using a computer-based virtual clinical study (VCS) because many controversial associations between various genetic polymorphisms and side effects of irinotecan have been reported. METHODS: To optimize biochemical parameters of irinotecan and its metabolites in the PBPK modeling, a Cluster Newton method was introduced. In the VCS, virtual patients were generated considering the inter-individual variability and genetic polymorphisms of enzymes and transporters. RESULTS: Approximately 30 sets of parameters of the PBPK model gave good reproduction of the pharmacokinetics of irinotecan and its metabolites. Of these, 19 sets gave relatively good description of the effect of UGT1A1 *28 and SLCO1B1 c.521T>C polymorphism on the SN-38 plasma concentration, neutropenia, and diarrhea observed in clinical studies reported mainly by Teft et al. (Br J Cancer. 112(5):857-65, 20). VCS also indicated that the frequency of significant association of biliary index with diarrhea was higher than that of UGT1A1 *28 polymorphism. CONCLUSION: The VCS confirmed the importance of genetic polymorphisms of UGT1A1 *28 and SLCO1B1 c.521T>C in the irinotecan induced side effects. The VCS also indicated that biliary index is a better biomarker of diarrhea than UGT1A1 *28 polymorphism.


Assuntos
Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Camptotecina/análogos & derivados , Modelos Biológicos , Polimorfismo Genético , Área Sob a Curva , Camptotecina/efeitos adversos , Camptotecina/farmacocinética , Genótipo , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Humanos , Irinotecano , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Probabilidade
16.
J Pharm Sci ; 105(7): 2222-30, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27262201

RESUMO

The aim of this study was to develop an in silico prediction system to assess which of 7 categories of drug transporters (organic anion transporting polypeptide [OATP] 1B1/1B3, multidrug resistance-associated protein [MRP] 2/3/4, organic anion transporter [OAT] 1, OAT3, organic cation transporter [OCT] 1/2/multidrug and toxin extrusion [MATE] 1/2-K, multidrug resistance protein 1 [MDR1], and breast cancer resistance protein [BCRP]) can recognize compounds as substrates using its chemical structure alone. We compiled an internal data set consisting of 260 compounds that are substrates for at least 1 of the 7 categories of drug transporters. Four physicochemical parameters (charge, molecular weight, lipophilicity, and plasma unbound fraction) of each compound were used as the basic descriptors. Furthermore, a greedy algorithm was used to select 3 additional physicochemical descriptors from 731 available descriptors. In addition, transporter nonsubstrates tend not to be in the public domain; we, thus, tried to compile an expert-curated data set of putative nonsubstrates for each transporter using personal opinions of 11 researchers in the field of drug transporters. The best prediction was finally achieved by a support vector machine based on 4 basic and 3 additional descriptors. The model correctly judged that 364 of 412 compounds (internal data set) and 111 of 136 compounds (external data set) were substrates, indicating that this model performs well enough to predict the specificity of transporter substrates.


Assuntos
Proteínas de Transporte/metabolismo , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Máquina de Vetores de Suporte , Algoritmos , Transporte Biológico , Simulação por Computador , Lipídeos/química , Peso Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Valor Preditivo dos Testes , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA