Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 627(8004): 680-687, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448587

RESUMO

Methods for selective covalent modification of amino acids on proteins can enable a diverse array of applications, spanning probes and modulators of protein function to proteomics1-3. Owing to their high nucleophilicity, cysteine and lysine residues are the most common points of attachment for protein bioconjugation chemistry through acid-base reactivity3,4. Here we report a redox-based strategy for bioconjugation of tryptophan, the rarest amino acid, using oxaziridine reagents that mimic oxidative cyclization reactions in indole-based alkaloid biosynthetic pathways to achieve highly efficient and specific tryptophan labelling. We establish the broad use of this method, termed tryptophan chemical ligation by cyclization (Trp-CLiC), for selectively appending payloads to tryptophan residues on peptides and proteins with reaction rates that rival traditional click reactions and enabling global profiling of hyper-reactive tryptophan sites across whole proteomes. Notably, these reagents reveal a systematic map of tryptophan residues that participate in cation-π interactions, including functional sites that can regulate protein-mediated phase-separation processes.


Assuntos
Cátions , Ciclização , Indicadores e Reagentes , Proteínas , Triptofano , Cátions/química , Indicadores e Reagentes/química , Oxirredução , Proteoma/química , Triptofano/química , Peptídeos/química , Química Click , Proteínas/química
2.
Chembiochem ; 24(11): e202300116, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37069799

RESUMO

While vaccines and antivirals are now being deployed for the current SARS-CoV-2 pandemic, we require additional antiviral therapeutics to not only effectively combat SARS-CoV-2 and its variants, but also future coronaviruses. All coronaviruses have relatively similar genomes that provide a potential exploitable opening to develop antiviral therapies that will be effective against all coronaviruses. Among the various genes and proteins encoded by all coronaviruses, one particularly "druggable" or relatively easy-to-drug target is the coronavirus Main Protease (3CLpro or Mpro), an enzyme that is involved in cleaving a long peptide translated by the viral genome into its individual protein components that are then assembled into the virus to enable viral replication in the cell. Inhibiting Mpro with a small-molecule antiviral would effectively stop the ability of the virus to replicate, providing therapeutic benefit. In this study, we have utilized activity-based protein profiling (ABPP)-based chemoproteomic approaches to discover and further optimize cysteine-reactive pyrazoline-based covalent inhibitors for the SARS-CoV-2 Mpro. Structure-guided medicinal chemistry and modular synthesis of di- and tri-substituted pyrazolines bearing either chloroacetamide or vinyl sulfonamide cysteine-reactive warheads enabled the expedient exploration of structure-activity relationships (SAR), yielding nanomolar potency inhibitors against Mpro from not only SARS-CoV-2, but across many other coronaviruses. Our studies highlight promising chemical scaffolds that may contribute to future pan-coronavirus inhibitors.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Cisteína , Antivirais/farmacologia , Antivirais/química , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Simulação de Acoplamento Molecular
3.
Bioconjug Chem ; 34(3): 510-517, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36787347

RESUMO

Cysteines are routinely used as site-specific handles to synthesize antibody-drug conjugates for targeted immunotherapy applications. Michael additions between thiols and maleimides are some of the most common methods for modifying cysteines, but these functional groups can be difficult to prepare on scale, and the resulting linkages have been shown to be reversible under some physiological conditions. Here, we show that the enzyme tyrosinase, which oxidizes conveniently accessed phenols to afford reactive ortho-quinone intermediates, can be used to attach phenolic cargo to cysteines engineered on antibody surfaces. The resulting linkages between the thiols and ortho-quinones are shown to be more resistant than maleimides to reversion under physiological conditions. Using this approach, we construct antibody conjugates bearing cytotoxic payloads, which exhibit targeted cell killing, and further demonstrate this method for the attachment of a variety of cargo to antibodies, including fluorophores and oligonucleotides.


Assuntos
Antineoplásicos , Imunoconjugados , Cisteína , Acoplamento Oxidativo , Compostos de Sulfidrila , Quinonas , Maleimidas
4.
J Am Chem Soc ; 144(50): 22890-22901, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36484997

RESUMO

Activity-based protein profiling (ABPP) is a versatile strategy for identifying and characterizing functional protein sites and compounds for therapeutic development. However, the vast majority of ABPP methods for covalent drug discovery target highly nucleophilic amino acids such as cysteine or lysine. Here, we report a methionine-directed ABPP platform using Redox-Activated Chemical Tagging (ReACT), which leverages a biomimetic oxidative ligation strategy for selective methionine modification. Application of ReACT to oncoprotein cyclin-dependent kinase 4 (CDK4) as a representative high-value drug target identified three new ligandable methionine sites. We then synthesized a methionine-targeting covalent ligand library bearing a diverse array of heterocyclic, heteroatom, and stereochemically rich substituents. ABPP screening of this focused library identified 1oxF11 as a covalent modifier of CDK4 at an allosteric M169 site. This compound inhibited kinase activity in a dose-dependent manner on purified protein and in breast cancer cells. Further investigation of 1oxF11 found prominent cation-π and H-bonding interactions stabilizing the binding of this fragment at the M169 site. Quantitative mass-spectrometry studies validated 1oxF11 ligation of CDK4 in breast cancer cell lysates. Further biochemical analyses revealed cross-talk between M169 oxidation and T172 phosphorylation, where M169 oxidation prevented phosphorylation of the activating T172 site on CDK4 and blocked cell cycle progression. By identifying a new mechanism for allosteric methionine redox regulation on CDK4 and developing a unique modality for its therapeutic intervention, this work showcases a generalizable platform that provides a starting point for engaging in broader chemoproteomics and protein ligand discovery efforts to find and target previously undruggable methionine sites.


Assuntos
Neoplasias da Mama , Metionina , Humanos , Feminino , Quinase 4 Dependente de Ciclina/metabolismo , Ligantes , Fosforilação , Oxirredução , Racemetionina/metabolismo
5.
Mol Cell ; 82(16): 3045-3060.e11, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35752173

RESUMO

Cancer mortality is primarily a consequence of its metastatic spread. Here, we report that methionine sulfoxide reductase A (MSRA), which can reduce oxidized methionine residues, acts as a suppressor of pancreatic ductal adenocarcinoma (PDA) metastasis. MSRA expression is decreased in the metastatic tumors of PDA patients, whereas MSRA loss in primary PDA cells promotes migration and invasion. Chemoproteomic profiling of pancreatic organoids revealed that MSRA loss results in the selective oxidation of a methionine residue (M239) in pyruvate kinase M2 (PKM2). Moreover, M239 oxidation sustains PKM2 in an active tetrameric state to promote respiration, migration, and metastasis, whereas pharmacological activation of PKM2 increases cell migration and metastasis in vivo. These results demonstrate that methionine residues can act as reversible redox switches governing distinct signaling outcomes and that the MSRA-PKM2 axis serves as a regulatory nexus between redox biology and cancer metabolism to control tumor metastasis.


Assuntos
Carcinoma Ductal Pancreático , Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias Pancreáticas , Hormônios Tireóideos/metabolismo , Carcinoma Ductal Pancreático/genética , Humanos , Metionina , Metionina Sulfóxido Redutases/química , Metionina Sulfóxido Redutases/metabolismo , Oxirredução , Neoplasias Pancreáticas/genética , Piruvato Quinase/metabolismo , Proteínas de Ligação a Hormônio da Tireoide , Neoplasias Pancreáticas
6.
Infect Immun ; 89(8): e0014621, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34001560

RESUMO

The generation of oxidative stress is a host strategy used to control Staphylococcus aureus infections. Sulfur-containing amino acids, cysteine and methionine, are particularly susceptible to oxidation because of the inherent reactivity of sulfur. Due to the constant threat of protein oxidation, many systems evolved to protect S. aureus from protein oxidation or to repair protein oxidation after it occurs. The S. aureus peptide methionine sulfoxide reductase (Msr) system reduces methionine sulfoxide to methionine. Staphylococci have four Msr enzymes, which all perform this reaction. Deleting all four msr genes in USA300 LAC (Δmsr) sensitizes S. aureus to hypochlorous acid (HOCl) killing; however, the Δmsr strain does not exhibit increased sensitivity to H2O2 stress or superoxide anion stress generated by paraquat or pyocyanin. Consistent with increased susceptibility to HOCl killing, the Δmsr strain is slower to recover following coculture with both murine and human neutrophils than USA300 wild type. The Δmsr strain is attenuated for dissemination to the spleen following murine intraperitoneal infection and exhibits reduced bacterial burdens in a murine skin infection model. Notably, no differences in bacterial burdens were observed in any organ following murine intravenous infection. Consistent with these observations, USA300 wild-type and Δmsr strains have similar survival phenotypes when incubated with murine whole blood. However, the Δmsr strain is killed more efficiently by human whole blood. These findings indicate that species-specific immune cell composition of the blood may influence the importance of Msr enzymes during S. aureus infection of the human host.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Metionina Sulfóxido Redutases/metabolismo , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/enzimologia , Staphylococcus aureus/imunologia , Animais , Modelos Animais de Doenças , Suscetibilidade a Doenças , Peróxido de Hidrogênio/metabolismo , Metionina Sulfóxido Redutases/genética , Metionina Sulfóxido Redutases/imunologia , Camundongos , Viabilidade Microbiana/imunologia , Mutação , Oxirredução , Estresse Oxidativo , Staphylococcus aureus/genética
7.
J Am Chem Soc ; 143(18): 6990-7001, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33915049

RESUMO

Electrocatalysis enables the construction of C-C bonds under mild conditions via controlled formation of carbon-centered radicals. For sequences initiated by alkyl halide reduction, coordinatively unsaturated Ni complexes commonly serve as single-electron transfer agents, giving rise to the foundational question of whether outer- or inner-sphere electron transfer oxidative addition prevails in redox mediation. Indeed, rational design of electrochemical processes requires the discrimination of these two electron transfer pathways, as they can have outsized effects on the rate of substrate bond activation and thus impact radical generation rates and downstream product selectivities. We present results from combined synthetic, electroanalytical, and computational studies that examine the mechanistic differences of single electron transfer to alkyl halides imparted by Ni metal-ligand cooperativity. Electrogenerated reduced Ni species, stabilized by delocalized spin density onto a redox-active tpyPY2Me polypyridyl ligand, activates alkyl iodides via outer-sphere electron transfer, allowing for the selective activation of alkyl iodide substrates over halogen atom donors and the controlled generation and sequestration of electrogenerated radicals. In contrast, the Ni complex possessing a redox-innocent pentapyridine congener activates the substrates in an inner-sphere fashion owning to a purely metal-localized spin, thereby activating both substrates and halogen atom donors in an indiscriminate fashion, generating a high concentration of radicals and leading to unproductive dimerization. Our data establish that controlled electron transfer via Ni-ligand cooperativity can be used to limit undesired radical recombination products and promote selective radical processes in electrochemical environments, providing a generalizable framework for designing redox mediators with distinct rate and potential requirements.


Assuntos
Complexos de Coordenação/química , Elétrons , Níquel/química , Transporte de Elétrons , Radicais Livres/química , Ligantes , Estrutura Molecular
8.
J Am Chem Soc ; 142(38): 16461-16470, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32857500

RESUMO

The defined structure of molecules bearing multiple stereogenic axes is of increasing relevance to materials science, pharmaceuticals, and catalysis. However, catalytic enantioselective approaches to control multiple stereogenic axes remain synthetically challenging. We report the catalytic synthesis of two-axis terphenyl atropisomers, with complementary strategies to both chlorinated and brominated variants, formed with high diastereo- and enantioselectivity. The chemistry proceeds through a sequence of two distinct dynamic kinetic resolutions: first, an atroposelective ring opening of Bringmann-type lactones produces a product with one established axis of chirality, and second, a stereoselective arene halogenation delivers the product with the second axis of chirality established. In order to achieve these results, a class of Brønsted basic guanidinylated peptides, which catalyze an efficient atroposelective chlorination, is reported for the first time. In addition, a complementary bromination is reported, which also establishes the second stereogenic axis. These bromo-terphenyls are accessible following the discovery that chiral anion phase transfer catalysis by C2-symmetric phosphoric acids allows catalyst control in the second stereochemistry-determining event. Accordingly, we established the fully catalyst-controlled stereodivergent synthesis of all possible chlorinated stereoisomers while also demonstrating diastereodivergence in the brominated variants, with significant levels of enantioselectivity in all cases.


Assuntos
Peptídeos/química , Compostos de Terfenil/síntese química , Catálise , Cinética , Estrutura Molecular , Estereoisomerismo , Compostos de Terfenil/química
9.
Proc Natl Acad Sci U S A ; 117(11): 5733-5740, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32123103

RESUMO

The field of chemical modification of proteins has been dominated by random modification of lysines or more site-specific labeling of cysteines, each with attendant challenges. Recently, we have developed oxaziridine chemistry for highly selective modification of methionine called redox-activated chemical tagging (ReACT) but have not broadly tested the molecular parameters for efficient and stable protein modification. Here we systematically scanned methionines throughout one of the most popular antibody scaffolds, trastuzumab, used for antibody engineering and drug conjugation. We tested the expression, reactivities, and stabilities of 123 single engineered methionines distributed over the surface of the antibody when reacted with oxaziridine. We found uniformly high expression for these mutants and excellent reaction efficiencies with a panel of oxaziridines. Remarkably, the stability to hydrolysis of the sulfimide varied more than 10-fold depending on temperature and the site of the engineered methionine. Interestingly, the most stable and reactive sites were those that were partially buried, presumably because of their reduced access to water. There was also a 10-fold variation in stability depending on the nature of the oxaziridine, which was determined to be inversely correlated with the electrophilic nature of the sulfimide. Importantly, the stabilities of the best analogs were sufficient to support their use as antibody drug conjugates and potent in a breast cancer mouse xenograft model over a month. These studies provide key parameters for broad application of ReACT for efficient, stable, and site-specific antibody and protein bioconjugation to native or engineered methionines.


Assuntos
Aziridinas/análise , Imunoconjugados/química , Metionina/análise , Animais , Antineoplásicos/normas , Linhagem Celular Tumoral , Estabilidade de Medicamentos , Feminino , Humanos , Imunoconjugados/genética , Imunoconjugados/imunologia , Camundongos , Camundongos Nus , Engenharia de Proteínas/métodos , Estabilidade Proteica
10.
J Am Chem Soc ; 139(40): 14001-14004, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28972364

RESUMO

The development of a system for the operationally simple, scalable conversion of polyhydroxylated biomass into industrially relevant feedstock chemicals is described. This system includes a bimetallic Pd/Re catalyst in combination with hydrogen gas as a terminal reductant and enables the high-yielding reduction of sugar acids. This procedure has been applied to the synthesis of adipate esters, precursors for the production of Nylon-6,6, in excellent yield from biomass-derived sources.


Assuntos
Adipatos/química , Caprolactama/análogos & derivados , Hidrogênio/química , Polímeros/síntese química , Açúcares Ácidos/química , Adipatos/síntese química , Biomassa , Caprolactama/síntese química , Caprolactama/química , Catálise , Esterificação , Hidrogenação , Hidroxilação , Oxirredução , Paládio/química , Polímeros/química , Rênio/química , Açúcares Ácidos/síntese química
11.
Science ; 355(6325): 597-602, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28183972

RESUMO

Cysteine can be specifically functionalized by a myriad of acid-base conjugation strategies for applications ranging from probing protein function to antibody-drug conjugates and proteomics. In contrast, selective ligation to the other sulfur-containing amino acid, methionine, has been precluded by its intrinsically weaker nucleophilicity. Here, we report a strategy for chemoselective methionine bioconjugation through redox reactivity, using oxaziridine-based reagents to achieve highly selective, rapid, and robust methionine labeling under a range of biocompatible reaction conditions. We highlight the broad utility of this conjugation method to enable precise addition of payloads to proteins, synthesis of antibody-drug conjugates, and identification of hyperreactive methionine residues in whole proteomes.


Assuntos
Aziridinas/química , Cisteína/química , Imunoconjugados/química , Metionina/química , Actinas/química , Edição de Genes , Técnicas de Inativação de Genes , Metionina/análise , Mutação , Oxirredução , Fosfopiruvato Hidratase/genética , Domínios Proteicos , Proteínas/química , Proteômica/métodos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Hipoclorito de Sódio/farmacologia
12.
J Am Chem Soc ; 138(50): 16553-16560, 2016 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-27959518

RESUMO

Novel chiral iron phosphate complexes were prepared as catalysts for asymmetric oxidative coupling reactions. These catalysts were applied for the synthesis of enantio-enriched C1- and C2-symmetric BINOLs, in which the 3 and 3' positions are available for chemical modifications. It was proposed that the reaction takes place via an oxidative radical-anion coupling mechanism. A destructive BINOL racemization that competes with the enantioselective oxidative coupling of 2-naphthols was revealed, thereby offering new insights into this highly important reaction.

13.
Proc Natl Acad Sci U S A ; 112(50): 15303-7, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26621709

RESUMO

The mechanism of proton exchange in a metal-ligand enzyme active site mimic (compound 1) is described through amide hydrogen-deuterium exchange kinetics. The type and ratio of cationic guest to host in solution affect the rate of isotope exchange, suggesting that the rate of exchange is driven by a host whose cavity is occupied by water. Rate constants for acid-, base-, and water-mediated proton exchange vary by orders of magnitude depending on the guest, and differ by up to 200 million-fold relative to an alanine polypeptide. These results suggest that the unusual microenvironment of the cavity of 1 can dramatically alter the reactivity of associated water by magnitudes comparable to that of enzymes.


Assuntos
Medição da Troca de Deutério , Proteínas/química , Proteínas/metabolismo , Prótons , Alanina/química , Alanina/metabolismo , Amidas/química , Enzimas/química , Enzimas/metabolismo , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Soluções , Fatores de Tempo , Água
14.
Proc Natl Acad Sci U S A ; 112(25): 7645-9, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26056307

RESUMO

Decarbonizing the transportation sector is critical to achieving global climate change mitigation. Although biofuels will play an important role in conventional gasoline and diesel applications, bioderived solutions are particularly important in jet fuels and lubricants, for which no other viable renewable alternatives exist. Producing compounds for jet fuel and lubricant base oil applications often requires upgrading fermentation products, such as alcohols and ketones, to reach the appropriate molecular-weight range. Ketones possess both electrophilic and nucleophilic functionality, which allows them to be used as building blocks similar to alkenes and aromatics in a petroleum refining complex. Here, we develop a method for selectively upgrading biomass-derived alkyl methyl ketones with >95% yields into trimer condensates, which can then be hydrodeoxygenated in near-quantitative yields to give a new class of cycloalkane compounds. The basic chemistry developed here can be tailored for aviation fuels as well as lubricants by changing the production strategy. We also demonstrate that a sugarcane biorefinery could use natural synergies between various routes to produce a mixture of lubricant base oils and jet fuels that achieve net life-cycle greenhouse gas savings of up to 80%.


Assuntos
Biomassa , Gases , Efeito Estufa , Biocombustíveis , Fermentação
15.
J Am Chem Soc ; 131(10): 3464-5, 2009 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-19236093

RESUMO

The first transition metal catalyzed asymmetric carboalkoxylation reaction of propargyl esters is described. The (R)-MeO-DTBM-BIPHEP(AuCl)(2)-catalyzed reactions allow for the construction of benzopyrans containing quaternary stereocenters with excellent enantioselectivity. Experimental evidence supports a mechanism proceeding via the generation of a stabilized carbocation from an allylic oxonium intermediate and subsequent trapping by a chiral allylgold(I) spieces.


Assuntos
Benzopiranos/química , Ouro/química , Catálise , Estereoisomerismo
17.
J Am Chem Soc ; 126(47): 15592-602, 2004 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-15563189

RESUMO

The ruthenium-catalyzed cycloisomerization of 1,6- and 1,7-enynes substituted in the terminal allylic position with a tert-butyldimethylsilyl ether group emerges as an effective reaction to form unprecedented five- or six-membered rings possessing a geometrically defined enol silane. Straightforward synthetic access to a variety of achiral 1,6- and 1,7-enynes, as well as chiral ones, is presented. Ruthenium catalysts effect efficiently such single-step cycloisomerization at room temperature in acetone under neutral conditions. The cycloisomerization functions with (E) or (Z) 1,2-disubstituted alkenes. Parameters influencing the enol silane geometry are discussed. The level of selectivity depends on the alkyne substitution, the geometry of the double bond, and the nature of the catalyst. Furthermore, examples of stereoinduction are shown and lead to highly substituted carbo- and heterocycles with excellent diastereocontrol.


Assuntos
Alcenos/química , Alcinos/química , Compostos Alílicos/química , Éteres/química , Hidrocarbonetos Cíclicos/síntese química , Rutênio/química , Silanos/química , Catálise , Ciclização , Isomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA