Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4360, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468519

RESUMO

Chemotherapy-induced cardiac damage remains a leading cause of death amongst cancer survivors. Anthracycline-induced cardiotoxicity is mediated by severe mitochondrial injury, but little is known about the mechanisms by which cardiomyocytes adaptively respond to the injury. We observed the translocation of selected mitochondrial tricarboxylic acid (TCA) cycle dehydrogenases to the nucleus as an adaptive stress response to anthracycline-cardiotoxicity in human induced pluripotent stem cell-derived cardiomyocytes and in vivo. The expression of nuclear-targeted mitochondrial dehydrogenases shifts the nuclear metabolic milieu to maintain their function both in vitro and in vivo. This protective effect is mediated by two parallel pathways: metabolite-induced chromatin accessibility and AMP-kinase (AMPK) signaling. The extent of chemotherapy-induced cardiac damage thus reflects a balance between mitochondrial injury and the protective response initiated by the nuclear pool of mitochondrial dehydrogenases. Our study identifies nuclear translocation of mitochondrial dehydrogenases as an endogenous adaptive mechanism that can be leveraged to attenuate cardiomyocyte injury.


Assuntos
Cardiopatias , Células-Tronco Pluripotentes Induzidas , Humanos , Cardiotoxicidade/metabolismo , Cardiopatias/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Antibióticos Antineoplásicos/farmacologia , Antraciclinas/farmacologia , Inibidores da Topoisomerase II/farmacologia , Oxirredutases/metabolismo , Miócitos Cardíacos/metabolismo , Doxorrubicina/farmacologia
2.
Elife ; 122023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37158595

RESUMO

Potassium efflux via the two-pore K+ channel TWIK2 is a requisite step for the activation of NLRP3 inflammasome, however, it remains unclear how K+ efflux is activated in response to select cues. Here, we report that during homeostasis, TWIK2 resides in endosomal compartments. TWIK2 is transported by endosomal fusion to the plasmalemma in response to increased extracellular ATP resulting in the extrusion of K+. We showed that ATP-induced endosomal TWIK2 plasmalemma translocation is regulated by Rab11a. Deleting Rab11a or ATP-ligated purinergic receptor P2X7 each prevented endosomal fusion with the plasmalemma and K+ efflux as well as NLRP3 inflammasome activation in macrophages. Adoptive transfer of Rab11a-depleted macrophages into mouse lungs prevented NLRP3 inflammasome activation and inflammatory lung injury. We conclude that Rab11a-mediated endosomal trafficking in macrophages thus regulates TWIK2 localization and activity at the cell surface and the downstream activation of the NLRP3 inflammasome. Results show that endosomal trafficking of TWIK2 to the plasmalemma is a potential therapeutic target in acute or chronic inflammatory states.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Camundongos , Trifosfato de Adenosina/metabolismo , Transporte Biológico , Caspase 1/metabolismo , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
3.
Sci Rep ; 12(1): 16488, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36182964

RESUMO

Blood-brain barrier (BBB) dysfunction is emerging as a key pathogenic factor in the progression of Alzheimer's disease (AD), where increased microvascular endothelial permeability has been proposed to play an important role. However, the molecular mechanisms leading to increased brain microvascular permeability in AD are not fully understood. We studied brain endothelial permeability in female APPswe/PS1∆E9 (APP/PS1) mice which constitute a transgenic mouse model of amyloid-beta (Aß) amyloidosis and found that permeability increases with aging in the areas showing the greatest amyloid plaque deposition. We performed an unbiased bulk RNA-sequencing analysis of brain endothelial cells (BECs) in female APP/PS1 transgenic mice. We observed that upregulation of interferon signaling gene expression pathways in BECs was among the most prominent transcriptomic signatures in the brain endothelium. Immunofluorescence analysis of isolated BECs from female APP/PS1 mice demonstrated higher levels of the Type I interferon-stimulated gene IFIT2. Immunoblotting of APP/PS1 BECs showed downregulation of the adherens junction protein VE-cadherin. Stimulation of human brain endothelial cells with interferon-ß decreased the levels of the adherens junction protein VE-cadherin as well as tight junction proteins Occludin and Claudin-5 and increased barrier leakiness. Depletion of the Type I interferon receptor in human brain endothelial cells prevented interferon-ß-induced VE-cadherin downregulation and restored endothelial barrier integrity. Our study suggests that Type I interferon signaling contributes to brain endothelial dysfunction in AD.


Assuntos
Doença de Alzheimer , Interferon Tipo I , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Claudina-5/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Endotélio/metabolismo , Feminino , Humanos , Interferon Tipo I/metabolismo , Interferon beta/metabolismo , Camundongos , Camundongos Transgênicos , Ocludina/metabolismo , Placa Amiloide/patologia , RNA/metabolismo , Receptor de Interferon alfa e beta/metabolismo , Proteínas de Junções Íntimas/metabolismo
4.
Redox Biol ; 52: 102304, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35413643

RESUMO

As essential regulators of mitochondrial quality control, mitochondrial dynamics and mitophagy play key roles in maintenance of metabolic health and cellular homeostasis. Here we show that knockdown of the membrane-inserted scaffolding and structural protein caveolin-1 (Cav-1) and expression of tyrosine 14 phospho-defective Cav-1 mutant (Y14F), as opposed to phospho-mimicking Y14D, altered mitochondrial morphology, and increased mitochondrial matrix mixing, mitochondrial fusion and fission dynamics as well as mitophagy in MDA-MB-231 triple negative breast cancer cells. Further, we found that interaction of Cav-1 with mitochondrial fusion/fission machinery Mitofusin 2 (Mfn2) and Dynamin related protein 1 (Drp1) was enhanced by Y14D mutant indicating Cav-1 Y14 phosphorylation prevented Mfn2 and Drp1 translocation to mitochondria. Moreover, limiting mitochondrial recruitment of Mfn2 diminished formation of the PINK1/Mfn2/Parkin complex required for initiation of mitophagy resulting in accumulation of damaged mitochondria and ROS (mtROS). Thus, these studies indicate that phospho-Cav-1 may be an important switch mechanism in cancer cell survival which could lead to novel strategies for complementing cancer therapies.


Assuntos
Caveolina 1 , Mitofagia , Caveolina 1/genética , Caveolina 1/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/fisiologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mitofagia/fisiologia , Espécies Reativas de Oxigênio/metabolismo
5.
Nat Biomed Eng ; 6(1): 54-66, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34083763

RESUMO

The precise understanding and control of microenvironmental cues could be used to optimize the efficacy of cell therapeutics. Here, we show that mesenchymal stromal cells (MSCs) singly coated with a soft conformal gel presenting defined chemomechanical cues promote matrix remodelling by secreting soluble interstitial collagenases in response to the presence of tumour necrosis factor alpha (TNF-α). In mice with fibrotic lung injury, treatment with the coated MSCs maintained normal collagen levels, fibre density and microelasticity in lung tissue, and the continuous presentation of recombinant TNF-α in the gel facilitated the reversal of aberrant tissue remodelling by the cells when inflammation subsided in the host. Gel coatings with predefined chemomechanical cues could be used to tailor cells with specific mechanisms of action for desired therapeutic outcomes.


Assuntos
Coristoma , Células-Tronco Mesenquimais , Engenharia Tecidual , Animais , Quimiotaxia , Coristoma/patologia , Colágeno , Géis , Camundongos , Engenharia Tecidual/métodos , Fator de Necrose Tumoral alfa
6.
Nat Commun ; 10(1): 2126, 2019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-31073164

RESUMO

Repair of the endothelial cell barrier after inflammatory injury is essential for tissue fluid homeostasis and normalizing leukocyte transmigration. However, the mechanisms of endothelial regeneration remain poorly understood. Here we show that the endothelial and hematopoietic developmental transcription factor Sox17 promotes endothelial regeneration in the endotoxemia model of endothelial injury. Genetic lineage tracing studies demonstrate that the native endothelium itself serves as the primary source of endothelial cells repopulating the vessel wall following injury. We identify Sox17 as a key regulator of endothelial cell regeneration using endothelial-specific deletion and overexpression of Sox17. Endotoxemia upregulates Hypoxia inducible factor 1α, which in turn transcriptionally activates Sox17 expression. We observe that Sox17 increases endothelial cell proliferation via upregulation of Cyclin E1. Furthermore, endothelial-specific upregulation of Sox17 in vivo enhances lung endothelial regeneration. We conclude that endotoxemia adaptively activates Sox17 expression to mediate Cyclin E1-dependent endothelial cell regeneration and restore vascular homeostasis.


Assuntos
Ciclina E/genética , Endotélio Vascular/fisiopatologia , Endotoxemia/patologia , Proteínas HMGB/metabolismo , Proteínas Oncogênicas/genética , Regeneração/imunologia , Fatores de Transcrição SOXF/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Ciclina E/metabolismo , Modelos Animais de Doenças , Células Endoteliais/fisiologia , Endotoxemia/imunologia , Células HEK293 , Proteínas HMGB/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Oncogênicas/metabolismo , Regiões Promotoras Genéticas/genética , Fatores de Transcrição SOXF/genética , Transdução de Sinais/fisiologia , Regulação para Cima
7.
Cell Rep ; 23(12): 3565-3578, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29924999

RESUMO

Mitochondrial dynamics are tightly controlled by fusion and fission, and their dysregulation and excess reactive oxygen species (ROS) contribute to endothelial cell (EC) dysfunction. How redox signals regulate coupling between mitochondrial dynamics and endothelial (dys)function remains unknown. Here, we identify protein disulfide isomerase A1 (PDIA1) as a thiol reductase for the mitochondrial fission protein Drp1. A biotin-labeled Cys-OH trapping probe and rescue experiments reveal that PDIA1 depletion in ECs induces sulfenylation of Drp1 at Cys644, promoting mitochondrial fragmentation and ROS elevation without inducing ER stress, which drives EC senescence. Mechanistically, PDIA1 associates with Drp1 to reduce its redox status and activity. Defective wound healing and angiogenesis in diabetic or PDIA1+/- mice are restored by EC-targeted PDIA1 or the Cys oxidation-defective mutant Drp1. Thus, this study uncovers a molecular link between PDIA1 and Drp1 oxidoreduction, which maintains normal mitochondrial dynamics and limits endothelial senescence with potential translational implications for vascular diseases associated with diabetes or aging.


Assuntos
Senescência Celular , Dinaminas/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Dinâmica Mitocondrial , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Animais , Respiração Celular , Cisteína/metabolismo , Diabetes Mellitus Tipo 2/patologia , Estresse do Retículo Endoplasmático , Humanos , Camundongos , Mitocôndrias/metabolismo , Mutação/genética , Oxirredução , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Cicatrização
8.
Circulation ; 135(25): 2505-2523, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28381471

RESUMO

BACKGROUND: The mechanisms underlying the dedifferentiation and lineage conversion of adult human fibroblasts into functional endothelial cells have not yet been fully defined. Furthermore, it is not known whether fibroblast dedifferentiation recapitulates the generation of multipotent progenitors during embryonic development, which give rise to endothelial and hematopoietic cell lineages. Here we established the role of the developmental transcription factor SOX17 in regulating the bilineage conversion of fibroblasts by the generation of intermediate progenitors. METHODS: CD34+ progenitors were generated after the dedifferentiation of human adult dermal fibroblasts by overexpression of pluripotency transcription factors. Sorted CD34+ cells were transdifferentiated into induced endothelial cells and induced erythroblasts using lineage-specific growth factors. The therapeutic potential of the generated cells was assessed in an experimental model of myocardial infarction. RESULTS: Induced endothelial cells expressed specific endothelial cell surface markers and also exhibited the capacity for cell proliferation and neovascularization. Induced erythroblasts expressed erythroid surface markers and formed erythroid colonies. Endothelial lineage conversion was dependent on the upregulation of the developmental transcription factor SOX17, whereas suppression of SOX17 instead directed the cells toward an erythroid fate. Implantation of these human bipotential CD34+ progenitors into nonobese diabetic/severe combined immunodeficiency (NOD-SCID) mice resulted in the formation of microvessels derived from human fibroblasts perfused with mouse and human erythrocytes. Endothelial cells generated from human fibroblasts also showed upregulation of telomerase. Cell implantation markedly improved vascularity and cardiac function after myocardial infarction without any evidence of teratoma formation. CONCLUSIONS: Dedifferentiation of fibroblasts to intermediate CD34+ progenitors gives rise to endothelial cells and erythroblasts in a SOX17-dependent manner. These findings identify the intermediate CD34+ progenitor state as a critical bifurcation point, which can be tuned to generate functional blood vessels or erythrocytes and salvage ischemic tissue.


Assuntos
Antígenos CD34/fisiologia , Desdiferenciação Celular/fisiologia , Células Endoteliais/fisiologia , Eritroblastos/fisiologia , Fibroblastos/fisiologia , Fatores de Transcrição SOXF/fisiologia , Células-Tronco/fisiologia , Animais , Células Cultivadas , Humanos , Recém-Nascido , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
9.
PLoS One ; 8(10): e77077, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24204740

RESUMO

Human mesenchymal stem cells (MSCs) are adult multipotent stem cells which can be isolated from bone marrow, adipose tissue as well as other tissues and have the capacity to differentiate into a variety of mesenchymal cell types such as adipocytes, osteoblasts and chondrocytes. Differentiation of stem cells into mature cell types is guided by growth factors and hormones, but recent studies suggest that metabolic shifts occur during differentiation and can modulate the differentiation process. We therefore investigated mitochondrial biogenesis, mitochondrial respiration and the mitochondrial membrane potential during adipogenic differentiation of human MSCs. In addition, we inhibited mitochondrial function to assess its effects on adipogenic differentiation. Our data show that mitochondrial biogenesis and oxygen consumption increase markedly during adipogenic differentiation, and that reducing mitochondrial respiration by hypoxia or by inhibition of the mitochondrial electron transport chain significantly suppresses adipogenic differentiation. Furthermore, we used a novel approach to suppress mitochondrial activity using a specific siRNA-based knockdown of the mitochondrial transcription factor A (TFAM), which also resulted in an inhibition of adipogenic differentiation. Taken together, our data demonstrates that increased mitochondrial activity is a prerequisite for MSC differentiation into adipocytes. These findings suggest that metabolic modulation of adult stem cells can maintain stem cell pluripotency or direct adult stem cell differentiation.


Assuntos
Adipócitos/metabolismo , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Mitocôndrias/metabolismo , Consumo de Oxigênio , Adipócitos/citologia , Adipogenia , Adulto , Hipóxia Celular , Respiração Celular , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Expressão Gênica , Humanos , Immunoblotting , Potencial da Membrana Mitocondrial , Células-Tronco Mesenquimais/citologia , Microscopia Confocal , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Oxirredução , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
J Mol Cell Cardiol ; 64: 124-31, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24090675

RESUMO

Successful implantation and long-term survival of engineered tissue grafts hinges on adequate vascularization of the implant. Endothelial cells are essential for patterning vascular structures, but they require supportive mural cells such as pericytes/mesenchymal stem cells (MSCs) to generate stable, functional blood vessels. While there is evidence that the angiogenic effect of MSCs is mediated via the secretion of paracrine signals, the identity of these signals is unknown. By utilizing two functionally distinct human MSC clones, we found that so-called "pericytic" MSCs secrete the pro-angiogenic vascular guidance molecule SLIT3, which guides vascular development by directing ROBO4-positive endothelial cells to form networks in engineered tissue. In contrast, "non-pericytic" MSCs exhibit reduced activation of the SLIT3/ROBO4 pathway and do not support vascular networks. Using live cell imaging of organizing 3D vascular networks, we show that siRNA knockdown of SLIT3 in MSCs leads to disorganized clustering of ECs. Knockdown of its receptor ROBO4 in ECs abolishes the generation of functional human blood vessels in an in vivo xenogenic implant. These data suggest that the SLIT3/ROBO4 pathway is required for MSC-guided vascularization in engineered tissues. Heterogeneity of SLIT3 expression may underlie the variable clinical success of MSCs for tissue repair applications.


Assuntos
Proteínas de Membrana/genética , Neovascularização Fisiológica/genética , Receptores de Superfície Celular/genética , Engenharia Tecidual , Ativação Transcricional , Animais , Comunicação Celular , Movimento Celular , Análise por Conglomerados , Células Endoteliais/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Humanos , Proteínas de Membrana/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Pericitos/citologia , Pericitos/metabolismo , Fenótipo , Interferência de RNA , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Alicerces Teciduais
11.
J Mol Med (Berl) ; 91(10): 1185-97, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23794090

RESUMO

UNLABELLED: The rapid growth of cancer cells is permitted by metabolic changes, notably increased aerobic glycolysis and increased glutaminolysis. Aerobic glycolysis is also evident in the hypertrophying myocytes in right ventricular hypertrophy (RVH), particularly in association with pulmonary arterial hypertension (PAH). It is unknown whether glutaminolysis occurs in the heart. We hypothesized that glutaminolysis occurs in RVH and assessed the precipitating factors, transcriptional mechanisms, and physiological consequences of this metabolic pathway. RVH was induced in two models, one with PAH (Monocrotaline-RVH) and the other without PAH (pulmonary artery banding, PAB-RVH). Despite similar RVH, ischemia as determined by reductions in RV VEGFα, coronary blood flow, and microvascular density was greater in Monocrotaline-RVH versus PAB-RVH. A sixfold increase in (14)C-glutamine metabolism occurred in Monocrotaline-RVH but not in PAB-RVH. In the RV working heart model, the glutamine antagonist 6-diazo-5-oxo-L-norleucine (DON) decreased glutaminolysis, caused a reciprocal increase in glucose oxidation, and elevated cardiac output. Consistent with the increased glutaminolysis in RVH, RV expressions of glutamine transporters (SLC1A5 and SLC7A5) and mitochondrial malic enzyme were elevated (Monocrotaline-RVH > PAB-RVH > control). Capillary rarefaction and glutamine transporter upregulation also occurred in RVH in patients with PAH. cMyc and Max, known to mediate transcriptional upregulation of glutaminolysis, were increased in Monocrotaline-RVH. In vivo, DON (0.5 mg/kg/day × 3 weeks) restored pyruvate dehydrogenase activity, reduced RVH, and increased cardiac output (89 ± 8, vs. 55 ± 13 ml/min, p < 0.05) and treadmill distance (194 ± 71, vs. 36 ±7 m, p < 0.05) in Monocrotaline-RVH. Glutaminolysis is induced in the RV in PAH by cMyc-Max, likely as a consequence of RV ischemia. Inhibition of glutaminolysis restores glucose oxidation and has a therapeutic benefit in vivo. KEY MESSAGE: Patients with pulmonary artery hypertension (PAH) have evidence of cardiac glutaminolysis. Cardiac glutaminolysis is associated with microvascular rarefaction/ischemia. As in cancer, cardiac glutaminolysis results from activation of cMyc-Max. The specific glutaminolysis inhibitor DON regresses right ventricular hypertrophy. DON improves cardiac function and exercise capacity in an animal model of PAH.


Assuntos
Glutamina/metabolismo , Ventrículos do Coração/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Diazo-Oxo-Norleucina/administração & dosagem , Diazo-Oxo-Norleucina/farmacologia , Modelos Animais de Doenças , Hipertensão Pulmonar Primária Familiar , Glucose/metabolismo , Glutamina/antagonistas & inibidores , Ventrículos do Coração/patologia , Hipertensão Pulmonar/etiologia , Hipertrofia Ventricular Direita/complicações , Hipertrofia Ventricular Direita/tratamento farmacológico , Hipertrofia Ventricular Direita/genética , Hipertrofia Ventricular Direita/metabolismo , Hipóxia , Masculino , Modelos Biológicos , Oxirredução , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ratos
12.
Am J Respir Crit Care Med ; 187(8): 865-78, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23449689

RESUMO

RATIONALE: Pulmonary arterial hypertension (PAH) is a lethal, female-predominant, vascular disease. Pathologic changes in PA smooth muscle cells (PASMC) include excessive proliferation, apoptosis-resistance, and mitochondrial fragmentation. Activation of dynamin-related protein increases mitotic fission and promotes this proliferation-apoptosis imbalance. The contribution of decreased fusion and reduced mitofusin-2 (MFN2) expression to PAH is unknown. OBJECTIVES: We hypothesize that decreased MFN2 expression promotes mitochondrial fragmentation, increases proliferation, and impairs apoptosis. The role of MFN2's transcriptional coactivator, peroxisome proliferator-activated receptor γ coactivator 1-α (PGC1α), was assessed. MFN2 therapy was tested in PAH PASMC and in models of PAH. METHODS: Fusion and fission mediators were measured in lungs and PASMC from patients with PAH and female rats with monocrotaline or chronic hypoxia+Sugen-5416 (CH+SU) PAH. The effects of adenoviral mitofusin-2 (Ad-MFN2) overexpression were measured in vitro and in vivo. MEASUREMENTS AND MAIN RESULTS: In normal PASMC, siMFN2 reduced expression of MFN2 and PGC1α; conversely, siPGC1α reduced PGC1α and MFN2 expression. Both interventions caused mitochondrial fragmentation. siMFN2 increased proliferation. In rodent and human PAH PASMC, MFN2 and PGC1α were decreased and mitochondria were fragmented. Ad-MFN2 increased fusion, reduced proliferation, and increased apoptosis in human PAH and CH+SU. In CH+SU, Ad-MFN2 improved walking distance (381 ± 35 vs. 245 ± 39 m; P < 0.05); decreased pulmonary vascular resistance (0.18 ± 0.02 vs. 0.38 ± 0.14 mm Hg/ml/min; P < 0.05); and decreased PA medial thickness (14.5 ± 0.8 vs. 19 ± 1.7%; P < 0.05). Lung vascularity was increased by MFN2. CONCLUSIONS: Decreased expression of MFN2 and PGC1α contribute to mitochondrial fragmentation and a proliferation-apoptosis imbalance in human and experimental PAH. Augmenting MFN2 has therapeutic benefit in human and experimental PAH.


Assuntos
GTP Fosfo-Hidrolases/deficiência , Proteínas de Choque Térmico/deficiência , Hipertensão Pulmonar/fisiopatologia , Dinâmica Mitocondrial/fisiologia , Proteínas Mitocondriais/deficiência , Fatores de Transcrição/deficiência , Animais , Apoptose/fisiologia , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Tolerância ao Exercício/efeitos dos fármacos , Hipertensão Pulmonar Primária Familiar , Feminino , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Pulmão/citologia , Pulmão/patologia , Proteínas de Membrana/administração & dosagem , Proteínas de Membrana/deficiência , Dinâmica Mitocondrial/genética , Proteínas Mitocondriais/administração & dosagem , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/fisiologia , Atrofia Óptica Autossômica Dominante/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Ratos , Ratos Sprague-Dawley
13.
J Mol Med (Berl) ; 91(3): 333-46, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23247844

RESUMO

Pyruvate dehydrogenase kinase (PDK) is activated in right ventricular hypertrophy (RVH), causing an increase in glycolysis relative to glucose oxidation that impairs right ventricular function. The stimulus for PDK upregulation, its isoform specificity, and the long-term effects of PDK inhibition are unknown. We hypothesize that FOXO1-mediated PDK4 upregulation causes bioenergetic impairment and RV dysfunction, which can be reversed by dichloroacetate. Adult male Fawn-Hooded rats (FHR) with pulmonary arterial hypertension (PAH) and right ventricular hypertrophy (RVH; age 6-12 months) were compared to age-matched controls. Glucose oxidation (GO) and fatty acid oxidation (FAO) were measured at baseline and after acute dichloroacetate (1 mM × 40 min) in isolated working hearts and in freshly dispersed RV myocytes. The effects of chronic dichloroacetate (0.75 g/L drinking water for 6 months) on cardiac output (CO) and exercise capacity were measured in vivo. Expression of PDK4 and its regulatory transcription factor, FOXO1, were also measured in FHR and RV specimens from PAH patients (n = 10). Microarray analysis of 168 genes related to glucose or FA metabolism showed >4-fold upregulation of PDK4, aldolase B, and acyl-coenzyme A oxidase. FOXO1 was increased in FHR RV, whereas HIF-1 α was unaltered. PDK4 expression was increased, and the inactivated form of FOXO1 decreased in human PAH RV (P < 0.01). Pyruvate dehydrogenase (PDH) inhibition in RVH increased proton production and reduced GO's contribution to the tricarboxylic acid (TCA) cycle. Acutely, dichloroacetate reduced RV proton production and increased GO's contribution (relative to FAO) to the TCA cycle and ATP production in FHR (P < 0.01). Chronically dichloroacetate decreased PDK4 and FOXO1, thereby activating PDH and increasing GO in FHR. These metabolic changes increased CO (84 ± 14 vs. 69 ± 14 ml/min, P < 0.05) and treadmill-walking distance (239 ± 20 vs. 171 ± 22 m, P < 0.05). Chronic dichloroacetate inhibits FOXO1-induced PDK4 upregulation and restores GO, leading to improved bioenergetics and RV function in RVH.


Assuntos
Ácido Dicloroacético/administração & dosagem , Fatores de Transcrição Forkhead/metabolismo , Glucose/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Proteína Forkhead Box O1 , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/fisiopatologia , Oxirredução/efeitos dos fármacos , Condicionamento Físico Animal , Piruvato Desidrogenase Quinase de Transferência de Acetil , Ratos , Regulação para Cima/efeitos dos fármacos , Disfunção Ventricular Direita/metabolismo , Disfunção Ventricular Direita/fisiopatologia
14.
FASEB J ; 26(5): 2175-86, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22321727

RESUMO

Mitochondria exist in dynamic networks that undergo fusion and fission. Mitochondrial fusion and fission are mediated by several GTPases in the outer mitochondrial membrane, notably mitofusin-2 (Mfn-2), which promotes fusion, and dynamin-related protein (Drp-1), which promotes fission. We report that human lung cancer cell lines exhibit an imbalance of Drp-1/Mfn-2 expression, which promotes a state of mitochondrial fission. Lung tumor tissue samples from patients demonstrated a similar increase in Drp-1 and decrease in Mfn-2 when compared to adjacent healthy lung. Complementary approaches to restore mitochondrial network formation in lung cancer cells by overexpression of Mfn-2, Drp-1 inhibition, or Drp-1 knockdown resulted in a marked reduction of cancer cell proliferation and an increase in spontaneous apoptosis. The number of cancer cells in S phase decreased from 32.4 ± 0.6 to 6.4 ± 0.3% with Drp-1 inhibition (P<0.001). In a xenotransplantation model, Mfn-2 gene therapy or Drp-1 inhibition could regress tumor growth. The tumor volume decreased from 205.6 ± 59 to 70.6 ± 15 mm(3) (P<0.05) with Mfn-2 overexpression and from 186.0 ± 19 to 87.0 ± 6 mm(3) (P<0.01) with therapeutic Drp-1 inhibition. Impaired fusion and enhanced fission contribute fundamentally to the proliferation/apoptosis imbalance in cancer and constitute promising novel therapeutic targets.


Assuntos
Ciclo Celular , Neoplasias Pulmonares/patologia , Mitocôndrias/fisiologia , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Camundongos , Camundongos Nus , Tomografia por Emissão de Pósitrons , Reação em Cadeia da Polimerase em Tempo Real , Tomografia Computadorizada por Raios X
15.
Am J Respir Crit Care Med ; 183(8): 1080-91, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21148721

RESUMO

RATIONALE: The etiology of hepatopulmonary syndrome (HPS), a common complication of cirrhosis, is unknown. Inflammation and macrophage accumulation occur in HPS; however, their importance is unclear. Common bile duct ligation (CBDL) creates an accepted model of HPS, allowing us to investigate the cause of HPS. OBJECTIVES: We hypothesized that macrophages are central to HPS and investigated the therapeutic potential of macrophage depletion. METHODS: Hemodynamics, alveolar-arterial gradient, vascular reactivity, and histology were assessed in CBDL versus sham rats (n = 21 per group). The effects of plasma on smooth muscle cell proliferation and endothelial tube formation were measured. Macrophage depletion was used to prevent (gadolinium) or regress (clodronate) HPS. CD68(+) macrophages and capillary density were measured in the lungs of patients with cirrhosis versus control patients (n = 10 per group). MEASUREMENTS AND MAIN RESULTS: CBDL increased cardiac output and alveolar-arterial gradient by causing capillary dilatation and arteriovenous malformations. Activated CD68(+)macrophages (nuclear factor-κB+) accumulated in HPS pulmonary arteries, drawn by elevated levels of plasma endotoxin and lung monocyte chemoattractant protein-1. These macrophages expressed inducible nitric oxide synthase, vascular endothelial growth factor, and platelet-derived growth factor. HPS plasma increased endothelial tube formation and pulmonary artery smooth muscle cell proliferation. Macrophage depletion prevented and reversed the histological and hemodynamic features of HPS. CBDL lungs demonstrated increased medial thickness and obstruction of small pulmonary arteries. Nitric oxide synthase inhibition unmasked exaggerated pulmonary vasoconstrictor responses in HPS. Patients with cirrhosis had increased pulmonary intravascular macrophage accumulation and capillary density. CONCLUSIONS: HPS results from intravascular accumulation of CD68(+)macrophages. An occult proliferative vasculopathy may explain the occasional transition to portopulmonary hypertension. Macrophage depletion may have therapeutic potential in HPS.


Assuntos
Antígenos CD/imunologia , Antígenos de Diferenciação Mielomonocítica/imunologia , Síndrome Hepatopulmonar/imunologia , Macrófagos/imunologia , Animais , Antígenos CD/fisiologia , Antígenos de Diferenciação Mielomonocítica/fisiologia , Malformações Arteriovenosas/etiologia , Malformações Arteriovenosas/fisiopatologia , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Síndrome Hepatopulmonar/etiologia , Humanos , Pulmão/irrigação sanguínea , Pulmão/citologia , Pulmão/imunologia , Macrófagos/fisiologia , Masculino , Músculo Liso Vascular/fisiopatologia , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/fisiologia , Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Fator de Crescimento Derivado de Plaquetas/fisiologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/fisiologia
16.
Arterioscler Thromb Vasc Biol ; 31(2): 337-44, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20966394

RESUMO

OBJECTIVE: The proinflammatory cytokine S100A12 is associated with coronary atherosclerotic plaque rupture. We previously generated transgenic mice with vascular smooth muscle-targeted expression of human S100A12 and found that these mice developed aortic aneurysmal dilation of the thoracic aorta. In the current study, we tested the hypothesis that S100A12 expressed in vascular smooth muscle in atherosclerosis-prone apolipoprotein E (ApoE)-null mice would accelerate atherosclerosis. METHODS AND RESULTS: ApoE-null mice with or without the S100A12 transgene were analyzed. We found a 1.4-fold increase in atherosclerotic plaque size and more specifically a large increase in calcified plaque area (45% versus 7% of innominate artery plaques and 18% versus 10% of aortic root plaques) in S100A12/ApoE-null mice compared with wild-type/ApoE-null littermates. Expression of bone morphogenic protein and other osteoblastic genes was increased in aorta and cultured vascular smooth muscle, and importantly, these changes in gene expression preceded the development of vascular calcification in S100A12/ApoE-null mice. Accelerated atherosclerosis and vascular calcification were mediated, at least in part, by oxidative stress because inhibition of NADPH oxidase attenuated S100A12-mediated osteogenesis in cultured vascular smooth muscle cells. S100A12 transgenic mice in the wild-type background (ApoE+/+) showed minimal vascular calcification, suggesting that S100A12 requires a proinflammatory/proatherosclerotic environment to induce osteoblastic differentiation and vascular calcification. CONCLUSIONS: Vascular smooth muscle S100A12 accelerates atherosclerosis and augments atherosclerosis-triggered osteogenesis, reminiscent of features associated with plaque instability.


Assuntos
Apolipoproteínas E/metabolismo , Calcinose/fisiopatologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatologia , Osteogênese/fisiologia , Proteínas S100/metabolismo , Animais , Apolipoproteínas E/genética , Células Cultivadas , Modelos Animais de Doenças , Regulação da Expressão Gênica/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , NADPH Oxidases/metabolismo , Estresse Oxidativo/fisiologia , Proteínas S100/genética , Proteína S100A12 , Transdução de Sinais/fisiologia
17.
Chest ; 138(5): 1234-9, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21051399

RESUMO

The current treatment of pulmonary arterial hypertension (PAH) uses vasodilator drugs. Although they improve symptoms associated with PAH, their chronic effects on the pulmonary vasculature and the right ventricle (RV) in humans remain unknown. We report the autopsy findings from a patient with idiopathic PAH treated with epoprostenol successfully for 18 years. The patient died of colon cancer. The pulmonary vasculature surprisingly showed extensive changes of a proliferative vasculopathy. Immunohistochemical studies confirmed ongoing cellular proliferation. Studies of the RV demonstrated concentric hypertrophy with seemingly preserved contractility. The myocardium shifted to glycolytic metabolism. Although the long-term use of epoprostenol contributed to the patient's increased survival, it did not prevent progression of the underlying vascular disease. Remarkably, the RV was able to sustain a normal cardiac output in the face of advanced vascular pathology. The mechanisms by which the RV adapts to chronic PAH need further study.


Assuntos
Anti-Hipertensivos/uso terapêutico , Epoprostenol/uso terapêutico , Hipertensão Pulmonar/tratamento farmacológico , Artéria Pulmonar/efeitos dos fármacos , Vasodilatação/fisiologia , Anti-Hipertensivos/administração & dosagem , Relação Dose-Resposta a Droga , Epoprostenol/administração & dosagem , Evolução Fatal , Feminino , Seguimentos , Humanos , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/fisiopatologia , Pessoa de Meia-Idade , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Fatores de Tempo , Vasodilatação/efeitos dos fármacos
18.
Circulation ; 121(24): 2661-71, 2010 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-20529999

RESUMO

BACKGROUND: Excessive proliferation and impaired apoptosis of pulmonary artery (PA) smooth muscle cells (PASMCs) contribute to vascular obstruction in patients and fawn-hooded rats (FHRs) with PA hypertension (PAH). Expression and activity of mitochondrial superoxide dismutase-2 (SOD2), the major generator of H(2)O(2), is known to be reduced in PAH; however, the mechanism and therapeutic relevance of this are unknown. METHODS AND RESULTS: SOD2 expression in PASMCs is decreased in PAH patients and FHRs with PAH. FHR PASMCs have higher proliferation and lower apoptosis rates than Sprague-Dawley rat PASMCs. Moreover, FHR PASMCs have hyperpolarized mitochondria, low H(2)O(2) production, and reduced cytoplasmic and mitochondrial redox state. Administration of SOD2 small interfering RNA to normal PASMCs recapitulates the FHR PAH phenotype, hyperpolarizing mitochondria, decreasing H(2)O(2), and inhibiting caspase activity. Conversely, SOD2 overexpression in FHR PASMCs or therapy with the SOD-mimetic metalloporphyrin Mn(III)tetrakis (4-benzoic acid) porphyrin (MnTBAP) reverses the hyperproliferative PAH phenotype. Importantly, SOD-mimetic therapy regresses PAH in vivo. Investigation of the SOD2 gene revealed no mutation, suggesting a possible epigenetic dysregulation. Genomic bisulfite sequencing demonstrates selective hypermethylation of a CpG island in an enhancer region of intron 2 and another in the promoter. Differential methylation occurs selectively in PAs versus aortic SMCs and is reversed by the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine, restoring both SOD2 expression and the ratio of proliferation to apoptosis. Expression of the enzymes that mediate gene methylation, DNA methyltransferases 1 and 3B, is upregulated in FHR lungs. CONCLUSIONS: Tissue-specific, epigenetic SOD2 deficiency initiates and sustains a heritable form of PAH by impairing redox signaling and creating a proliferative, apoptosis-resistant PASMC. SOD augmentation regresses experimental PAH. The discovery of an epigenetic component to PAH may offer new therapeutic targets.


Assuntos
Proliferação de Células , Epigênese Genética/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Mitocôndrias Musculares/enzimologia , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Adenoviridae/genética , Animais , Apoptose , Biomimética , Modelos Animais de Doenças , Epigênese Genética/fisiologia , Humanos , Peróxido de Hidrogênio/metabolismo , Hipertensão Pulmonar/tratamento farmacológico , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Fenótipo , Ratos , Ratos Mutantes , Ratos Sprague-Dawley
19.
J Clin Invest ; 118(2): 752-62, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18188452

RESUMO

Hypercapnia (elevated CO(2) levels) occurs as a consequence of poor alveolar ventilation and impairs alveolar fluid reabsorption (AFR) by promoting Na,K-ATPase endocytosis. We studied the mechanisms regulating CO(2)-induced Na,K-ATPase endocytosis in alveolar epithelial cells (AECs) and alveolar epithelial dysfunction in rats. Elevated CO(2) levels caused a rapid activation of AMP-activated protein kinase (AMPK) in AECs, a key regulator of metabolic homeostasis. Activation of AMPK was mediated by a CO(2)-triggered increase in intracellular Ca(2+) concentration and Ca(2+)/calmodulin-dependent kinase kinase-beta (CaMKK-beta). Chelating intracellular Ca(2+) or abrogating CaMKK-beta function by gene silencing or chemical inhibition prevented the CO(2)-induced AMPK activation in AECs. Activation of AMPK or overexpression of constitutively active AMPK was sufficient to activate PKC-zeta and promote Na,K-ATPase endocytosis. Inhibition or downregulation of AMPK via adenoviral delivery of dominant-negative AMPK-alpha(1) prevented CO(2)-induced Na,K-ATPase endocytosis. The hypercapnia effects were independent of intracellular ROS. Exposure of rats to hypercapnia for up to 7 days caused a sustained decrease in AFR. Pretreatment with a beta-adrenergic agonist, isoproterenol, or a cAMP analog ameliorated the hypercapnia-induced impairment of AFR. Accordingly, we provide evidence that elevated CO(2) levels are sensed by AECs and that AMPK mediates CO(2)-induced Na,K-ATPase endocytosis and alveolar epithelial dysfunction, which can be prevented with beta-adrenergic agonists and cAMP.


Assuntos
Dióxido de Carbono/metabolismo , Endocitose , Hipercapnia/enzimologia , Complexos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Proteínas Quinases Ativadas por AMP , Agonistas Adrenérgicos beta/farmacologia , Animais , Cálcio/antagonistas & inibidores , Cálcio/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Quelantes/farmacologia , AMP Cíclico/farmacologia , Endocitose/efeitos dos fármacos , Endocitose/genética , Líquido Extracelular/metabolismo , Humanos , Isoproterenol/farmacologia , Proteína Quinase C/metabolismo , Alvéolos Pulmonares/enzimologia , Ratos , Ratos Sprague-Dawley , Mucosa Respiratória/enzimologia
20.
J Neuroimmunol ; 140(1-2): 1-12, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12864967

RESUMO

The HIV-1 envelope protein gp120IIIB is selective for the CXCR4 chemokine receptor and has been shown to induce apoptosis in neurons both in vivo and in vitro. We examined the ability of gp120IIIB to signal through the rat CXCR4 (rCXCR4) receptor and its dependence on the presence of the human CD4 (hCD4) protein in a number of cell systems. SDF-1alpha potently inhibited N-type Ca channels in cultured HEK293 cells expressing both the Ca channel subunits and rCXCR4 receptors. However, gp120IIIB was ineffective in producing either Ca channel inhibition or in blocking the effects of SDF-1alpha. However, when hCD4 was coexpressed with rCXCR4 and Ca channel subunits, gp120IIIB also produced Ca channel inhibition. Similarly, in PC12 cells transfected with the rCXCR4, SDF-1alpha produced mobilization of intracellular Ca, while gp120IIIB was only effective when hCD4 was coexpressed. SDF-1alpha induced endocytosis of Yellow Fluorescent Protein (YFP)-tagged rCXCR4 expressed in PC12 cells, as did gp120IIIB, an effect which was enhanced by hCD4 coexpression. When tagged rCXCR4 was expressed in F-11 cells or in rat DRG neurons, SDF-1alpha produced extensive receptor endocytosis. However, the ability of gp120IIIB to produce endocytosis was dependent on the coexpression of hCD4. Our results demonstrate that the degree of hCD4 dependence of the agonist effects of gp120IIIB at the rCXCR4 receptor is cell-type specific.


Assuntos
Antígenos CD4/fisiologia , Proteína gp120 do Envelope de HIV/metabolismo , Imunidade Celular , Receptores CXCR4/metabolismo , Receptores de Quimiocinas , Animais , Animais Recém-Nascidos , Apoptose/imunologia , Linhagem Celular , Células Cultivadas , Endocitose/genética , Endocitose/imunologia , Gânglios Espinais/citologia , Gânglios Espinais/imunologia , Gânglios Espinais/metabolismo , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/fisiologia , Humanos , Imunidade Celular/genética , Neurônios/citologia , Neurônios/imunologia , Neurônios/metabolismo , Células PC12 , Ratos , Receptores CXCR4/genética , Receptores CXCR4/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Transfecção , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA