Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cancer Res Commun ; 4(3): 796-810, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38421899

RESUMO

Photodynamic therapy (PDT) is a tissue ablation technique able to selectively target tumor cells by activating the cytotoxicity of photosensitizer dyes with light. PDT is nonsurgical and tissue sparing, two advantages for treatments in anatomically complex disease sites such as the oral cavity. We have previously developed PORPHYSOME (PS) nanoparticles assembled from chlorin photosensitizer-containing building blocks (∼94,000 photosensitizers per particle) and capable of potent PDT. In this study, we demonstrate the selective uptake and curative tumor ablation of PS-enabled PDT in three preclinical models of oral cavity squamous cell carcinoma (OCSCC): biologically relevant subcutaneous Cal-33 (cell line) and MOC22 (syngeneic) mouse models, and an anatomically relevant orthotopic VX-2 rabbit model. Tumors selectively uptake PS (10 mg/kg, i.v.) with 6-to 40-fold greater concentration versus muscle 24 hours post-injection. Single PS nanoparticle-mediated PDT (PS-PDT) treatment (100 J/cm2, 100 mW/cm2) of Cal-33 tumors yielded significant apoptosis in 65.7% of tumor cells. Survival studies following PS-PDT treatments demonstrated 90% (36/40) overall response rate across all three tumor models. Complete tumor response was achieved in 65% of Cal-33 and 91% of MOC22 tumor mouse models 14 days after PS-PDT, and partial responses obtained in 25% and 9% of Cal-33 and MOC22 tumors, respectively. In buccal VX-2 rabbit tumors, combined surface and interstitial PS-PDT (200 J total) yielded complete responses in only 60% of rabbits 6 weeks after a single treatment whereas three repeated weekly treatments with PS-PDT (200 J/week) achieved complete ablation in 100% of tumors. PS-PDT treatments were well tolerated by animals with no treatment-associated toxicities and excellent cosmetic outcomes. SIGNIFICANCE: PS-PDT is a safe and repeatable treatment modality for OCSCC ablation. PS demonstrated tumor selective uptake and PS-PDT treatments achieved reproducible efficacy and effectiveness in multiple tumor models superior to other clinically tested photosensitizer drugs. Cosmetic and functional outcomes were excellent, and no clinically significant treatment-associated toxicities were detected. These results are enabling of window of opportunity trials for fluorescence-guided PS-PDT in patients with early-stage OCSCC scheduled for surgery.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Nanopartículas , Compostos Organotiofosforados , Fotoquimioterapia , Humanos , Animais , Coelhos , Camundongos , Fármacos Fotossensibilizantes/farmacologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/induzido quimicamente , Fotoquimioterapia/métodos , Carcinoma de Células Escamosas/tratamento farmacológico , Neoplasias Bucais/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/induzido quimicamente , Nanopartículas/uso terapêutico
2.
BMC Cancer ; 21(1): 1075, 2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34600526

RESUMO

BACKGROUND: Monitoring circulating tumor DNA (ctDNA) and circulating tumor cells (CTCs), known as liquid biopsies, continue to be developed as diagnostic and prognostic markers for a wide variety of cancer indications, mainly due to their minimally invasive nature and ability to offer a wide range of phenotypic and genetic information. While liquid biopsies maintain significant promising benefits, there is still limited information regarding the kinetics of ctDNA and CTCs following radiation therapy which remains a vital treatment modality in head and neck cancers. This study aims to describe the kinetics of ctDNA and CTCs following radiation exposure in a preclinical rabbit model with VX2 induced buccal carcinoma. METHODS: Seven rabbits were inoculated with VX2 cells in the buccal mucosa and subjected to radiation. At selected time points, blood sampling was performed to monitor differing levels of ctDNA and CTC. Plasma ctDNA was measured with quantitative PCR for papillomavirus E6 while CTCs were quantified using an immunomagnetic nanoparticles within a microfluidic device. Comparisons of CTC detection with EpCAM compared to multiple surface markers (EGFR, HER2 and PSMA) was evaluated and correlated with the tumor size. RESULTS: Plasma ctDNA reflects the overall tumor burden within the animal model. Analysis of correlations between ctDNA with tumor and lymph node volumes showed a positive correlation (R = 0.452 and R = 0.433 [p < 0.05]), respectively. Over the course of treatment, ctDNA levels declined and quickly becomes undetectable following tumor eradication. While during the course of treatment, ctDNA levels were noted to rise particularly upon initiation of radiation following scheduled treatment breaks. Levels of CTCs were observed to increase 1 week following inoculation of tumor to the primary site. For CTC detection, the use of multiple surface markers showed a greater sensitivity when compared to detection using only EpCAM. Plasma CTC levels remained elevated following radiation therapy which may account for an increased shedding of CTCs following radiation. CONCLUSION: This study demonstrates the utility of ctDNA and CTCs detection in response to radiation treatment in a preclinical head and neck model, allowing for better understanding of liquid biopsy applications in both clinical practice and research development.


Assuntos
Carcinoma de Células Escamosas/sangue , Carcinoma de Células Escamosas/radioterapia , Ácidos Nucleicos Livres/sangue , Neoplasias Bucais/sangue , Neoplasias Bucais/radioterapia , Animais , Biomarcadores Tumorais/sangue , Carcinoma de Células Escamosas/induzido quimicamente , DNA Tumoral Circulante/sangue , Papillomavirus de Coelho Cottontail , Molécula de Adesão da Célula Epitelial/sangue , Neoplasias de Cabeça e Pescoço/sangue , Neoplasias de Cabeça e Pescoço/induzido quimicamente , Neoplasias de Cabeça e Pescoço/radioterapia , Separação Imunomagnética/métodos , Biópsia Líquida/métodos , Masculino , Neoplasias Bucais/induzido quimicamente , Neoplasias Bucais/virologia , Nanopartículas , Transplante de Neoplasias , Fases de Leitura Aberta , Coelhos , Dosagem Radioterapêutica , Carga Tumoral
4.
Nanomedicine ; 32: 102327, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33220507

RESUMO

This study evaluates a long-acting liposomal fluorescence / CT dual-modality contrast agent (CF800) in head and neck cancer to enhance intraoperative tumor demarcation with fluorescence imaging and cone-beam computed tomography (CBCT). CF800 was administered to 12 buccal cancer-bearing rabbits. Imaging was acquired at regular time points to quantify time-dependent contrast enhancement. Surgery was performed 5-7 days after, with intraoperative near-infrared fluorescence endoscopy and CBCT, followed by histological and ex-vivo fluorescence assessment. Tumor enhancement on CT was significant at 24, 96 and 120 hours. Volumetric analysis of tumor segmentation showed high correlation between CBCT and micro-CT. Fluorescence signal was apparent in both ex-vivo and in-vivo imaging. Histological correlation showed [100%] specificity for primary tumor. Sensitivity and specificity of CF800 in detecting nodal involvement require further investigation.CF800 is long acting and has dual function for CT and fluorescence contrast, making it an excellent candidate for image-guided surgery.


Assuntos
Meios de Contraste/química , Neoplasias de Cabeça e Pescoço/cirurgia , Imagem Óptica , Cirurgia Assistida por Computador , Tomografia Computadorizada por Raios X , Animais , Biomarcadores Tumorais/metabolismo , Tomografia Computadorizada de Feixe Cônico , Fluorescência , Neoplasias de Cabeça e Pescoço/patologia , Injeções , Lipossomos/administração & dosagem , Lipossomos/farmacocinética , Linfonodos/diagnóstico por imagem , Linfonodos/patologia , Coelhos , Microtomografia por Raio-X
5.
BMC Med Imaging ; 20(1): 106, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32928138

RESUMO

BACKGROUND: Current sentinel lymph node biopsy (SLNB) techniques, including use of radioisotopes, have disadvantages including the use of a radioactive tracer. Indocyanine green (ICG) based near-infrared (NIR) fluorescence imaging and cone beam CT (CBCT) have advantages for intraoperative use. However, limited literature exists regarding their use in head and neck cancer SLNB. METHODS: This was a prospective, non-randomized study using a rabbit oral cavity VX2 squamous cell carcinoma model (n = 10) which develops lymph node metastasis. Pre-operatively, images were acquired by MicroCT. During surgery, CBCT and NIR fluorescence imaging of ICG was used to map and guide the SLNB resection. RESULTS: Intraoperative use of ICG to guide fluorescence resection resulted in identification of all lymph nodes identified by pre-operative CT. CBCT was useful for near real time intraoperative imaging and 3D reconstruction. CONCLUSIONS: This pre-clinical study further demonstrates the technical feasibility, limitations and advantages of intraoperative NIR-guided ICG imaging for SLN identification as a complementary method during head and neck surgery.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Verde de Indocianina/administração & dosagem , Metástase Linfática/diagnóstico por imagem , Neoplasias Bucais/cirurgia , Imagem Óptica/métodos , Linfonodo Sentinela/diagnóstico por imagem , Carcinoma de Células Escamosas de Cabeça e Pescoço/cirurgia , Animais , Linhagem Celular Tumoral , Estudos de Viabilidade , Humanos , Masculino , Neoplasias Bucais/diagnóstico por imagem , Neoplasias Bucais/patologia , Transplante de Neoplasias , Estudos Prospectivos , Coelhos , Radiografia Intervencionista , Linfonodo Sentinela/patologia , Linfonodo Sentinela/cirurgia , Biópsia de Linfonodo Sentinela , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico por imagem , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Microtomografia por Raio-X
6.
Endocr Relat Cancer ; 27(2): 41-53, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31751308

RESUMO

The incidence of differentiated thyroid cancer has increased significantly during the last several decades. Surgical resection is the primary treatment for thyroid cancer and is highly effective, resulting in 5-year survival rates greater than 98%. However, surgical resection can result in short- and long-term treatment-related morbidities. Additionally, as this malignancy often affects women less than 40 years of age, there is interest in more conservative treatment approaches and, an unmet need for therapeutic options that minimize the risk of surgery-related morbidities while simultaneously providing an effective cancer treatment. Photodynamic therapy (PDT) has the potential to reduce treatment-related side effects by decreasing invasiveness and limiting toxicity. Owing to multiple advantageous properties of the porphyrin-HDL nanoparticle (PLP) as a PDT agent, including preferential accumulation in tumor, biodegradability and unprecedented photosensitizer packing, we evaluate PLP-mediated PDT as a minimally invasive, tumor-specific treatment for thyroid cancer. On both a biologically relevant human papillary thyroid cancer (K1) mouse model and an anatomically relevant rabbit squamous carcinoma (VX2)-implanted rabbit thyroid model, the intrinsic fluorescence of PLP enabled tracking of tumor preferential accumulation and guided PDT. This resulted in significant and specific apoptosis in tumor tissue, but not surrounding normal tissues including trachea and recurrent laryngeal nerve (RLN). A long-term survival study further demonstrated that PLP-PDT enabled complete ablation of tumor tissue while sparing both the normal thyroid tissue and RLN from damage, thus providing a safe, minimally invasive, and effective alternative to thyroidectomy for thyroid cancer therapies.


Assuntos
Fotoquimioterapia/métodos , Neoplasias da Glândula Tireoide/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Camundongos , Nanopartículas/administração & dosagem , Porfirinas/administração & dosagem , Coelhos , Neoplasias da Glândula Tireoide/mortalidade , Neoplasias da Glândula Tireoide/patologia
7.
ACS Nano ; 10(9): 8325-45, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27419663

RESUMO

Many nanocarrier cancer therapeutics currently under development, as well as those used in the clinical setting, rely upon the enhanced permeability and retention (EPR) effect to passively accumulate in the tumor microenvironment and kill cancer cells. In leukemia, where leukemogenic stem cells and their progeny circulate within the peripheral blood or bone marrow, the EPR effect may not be operative. Thus, for leukemia therapeutics, it is essential to target and bind individual circulating cells. Here, we investigate mesoporous silica nanoparticle (MSN)-supported lipid bilayers (protocells), an emerging class of nanocarriers, and establish the synthesis conditions and lipid bilayer composition needed to achieve highly monodisperse protocells that remain stable in complex media as assessed in vitro by dynamic light scattering and cryo-electron microscopy and ex ovo by direct imaging within a chick chorioallantoic membrane (CAM) model. We show that for vesicle fusion conditions where the lipid surface area exceeds the external surface area of the MSN and the ionic strength exceeds 20 mM, we form monosized protocells (polydispersity index <0.1) on MSN cores with varying size, shape, and pore size, whose conformal zwitterionic supported lipid bilayer confers excellent stability as judged by circulation in the CAM and minimal opsonization in vivo in a mouse model. Having established protocell formulations that are stable colloids, we further modified them with anti-EGFR antibodies as targeting agents and reverified their monodispersity and stability. Then, using intravital imaging in the CAM, we directly observed in real time the progression of selective targeting of individual leukemia cells (using the established REH leukemia cell line transduced with EGFR) and delivery of a model cargo. Overall, we have established the effectiveness of the protocell platform for individual cell targeting and delivery needed for leukemia and other disseminated disease.


Assuntos
Sistemas de Liberação de Medicamentos , Leucemia/tratamento farmacológico , Bicamadas Lipídicas , Animais , Células Artificiais , Nanopartículas Metálicas , Camundongos , Nanopartículas , Dióxido de Silício
8.
Oncotarget ; 7(8): 8839-49, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26814433

RESUMO

BACKGROUND: Extracellular vesicles released by prostate cancer present in seminal fluid, urine, and blood may represent a non-invasive means to identify and prioritize patients with intermediate risk and high risk of prostate cancer. We hypothesize that enumeration of circulating prostate microparticles (PMPs), a type of extracellular vesicle (EV), can identify patients with Gleason Score≥4+4 prostate cancer (PCa) in a manner independent of PSA. PATIENTS AND METHODS: Plasmas from healthy volunteers, benign prostatic hyperplasia patients, and PCa patients with various Gleason score patterns were analyzed for PMPs. We used nanoscale flow cytometry to enumerate PMPs which were defined as submicron events (100-1000nm) immunoreactive to anti-PSMA mAb when compared to isotype control labeled samples. Levels of PMPs (counts/µL of plasma) were also compared to CellSearch CTC Subclasses in various PCa metastatic disease subtypes (treatment naïve, castration resistant prostate cancer) and in serially collected plasma sets from patients undergoing radical prostatectomy. RESULTS: PMP levels in plasma as enumerated by nanoscale flow cytometry are effective in distinguishing PCa patients with Gleason Score≥8 disease, a high-risk prognostic factor, from patients with Gleason Score≤7 PCa, which carries an intermediate risk of PCa recurrence. PMP levels were independent of PSA and significantly decreased after surgical resection of the prostate, demonstrating its prognostic potential for clinical follow-up. CTC subclasses did not decrease after prostatectomy and were not effective in distinguishing localized PCa patients from metastatic PCa patients. CONCLUSIONS: PMP enumeration was able to identify patients with Gleason Score ≥8 PCa but not patients with Gleason Score 4+3 PCa, but offers greater confidence than CTC counts in identifying patients with metastatic prostate cancer. CTC Subclass analysis was also not effective for post-prostatectomy follow up and for distinguishing metastatic PCa and localized PCa patients. Nanoscale flow cytometry of PMPs presents an emerging biomarker platform for various stages of prostate cancer.


Assuntos
Micropartículas Derivadas de Células/patologia , Vesículas Extracelulares/patologia , Citometria de Fluxo/métodos , Nanotecnologia , Próstata/patologia , Neoplasias da Próstata/patologia , Adulto , Anticorpos Monoclonais/imunologia , Biópsia , Estudos de Casos e Controles , Micropartículas Derivadas de Células/metabolismo , Vesículas Extracelulares/metabolismo , Seguimentos , Humanos , Masculino , Microscopia de Força Atômica , Gradação de Tumores , Estadiamento de Neoplasias , Prognóstico , Próstata/metabolismo , Próstata/cirurgia , Antígeno Prostático Específico/sangue , Prostatectomia , Hiperplasia Prostática/sangue , Hiperplasia Prostática/patologia , Hiperplasia Prostática/cirurgia , Neoplasias da Próstata/sangue , Neoplasias da Próstata/cirurgia , Neoplasias de Próstata Resistentes à Castração/sangue , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/cirurgia , Complexo de Endopeptidases do Proteassoma/imunologia , Estudos Retrospectivos , Células Tumorais Cultivadas , Adulto Jovem
9.
Sci Rep ; 5: 13635, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26323570

RESUMO

Three-dimensional (3D) cell cultures produce more in vivo-like multicellular structures such as spheroids that cannot be obtained in two-dimensional (2D) cell cultures. Thus, they are increasingly employed as models for cancer and drug research, as well as tissue engineering. It has proven challenging to stabilize spheroid architectures for detailed morphological examination. Here we overcome this issue using a silica bioreplication (SBR) process employed on spheroids formed from human pluripotent stem cells (hPSCs) and hepatocellular carcinoma HepG2 cells cultured in the nanofibrillar cellulose (NFC) hydrogel. The cells in the spheroids are more round and tightly interacting with each other than those in 2D cultures, and they develop microvilli-like structures on the cell membranes as seen in 2D cultures. Furthermore, SBR preserves extracellular matrix-like materials and cellular proteins. These findings provide the first evidence of intact hPSC spheroid architectures and similar fine structures to 2D-cultured cells, providing a pathway to enable our understanding of morphogenesis in 3D cultures.


Assuntos
Dióxido de Silício/química , Esferoides Celulares/citologia , Técnicas de Cultura de Células , Células Hep G2/citologia , Humanos , Hidrogéis/química , Imuno-Histoquímica , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Fenótipo , Células-Tronco Pluripotentes/citologia
10.
ACS Nano ; 6(3): 2174-88, 2012 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-22309035

RESUMO

The therapeutic potential of small interfering RNAs (siRNAs) is severely limited by the availability of delivery platforms that protect siRNA from degradation, deliver it to the target cell with high specificity and efficiency, and promote its endosomal escape and cytosolic dispersion. Here we report that mesoporous silica nanoparticle-supported lipid bilayers (or "protocells") exhibit multiple properties that overcome many of the limitations of existing delivery platforms. Protocells have a 10- to 100-fold greater capacity for siRNA than corresponding lipid nanoparticles and are markedly more stable when incubated under physiological conditions. Protocells loaded with a cocktail of siRNAs bind to cells in a manner dependent on the presence of an appropriate targeting peptide and, through an endocytic pathway followed by endosomal disruption, promote delivery of the silencing nucleotides to the cytoplasm. The expression of each of the genes targeted by the siRNAs was shown to be repressed at the protein level, resulting in a potent induction of growth arrest and apoptosis. Incubation of control cells that lack expression of the antigen recognized by the targeting peptide with siRNA-loaded protocells induced neither repression of protein expression nor apoptosis, indicating the precise specificity of cytotoxic activity. In terms of loading capacity, targeting capabilities, and potency of action, protocells provide unique attributes as a delivery platform for therapeutic oligonucleotides.


Assuntos
Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Nanopartículas/química , Peptídeos/metabolismo , RNA Interferente Pequeno/metabolismo , Dióxido de Silício/química , Transfecção/métodos , Animais , Apoptose/genética , Linhagem Celular , Proliferação de Células , Inativação Gênica , Humanos , Modelos Moleculares , Conformação Molecular , Porosidade , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética
11.
Clin Exp Metastasis ; 28(3): 309-17, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21234655

RESUMO

Survival following diagnosis of liver metastasis remains poor and improved treatment strategies to combat liver metastases are needed. Synthetic triterpenoids, including 1-[2-cyano-3-,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Imidazolide or CDDO-Im), have been shown to inhibit primary tumor growth and lung metastasis in experimental models. Oral administration of CDDO-Im results in relatively high liver concentrations, suggesting that CDDO-Im may provide an approach to treatment of liver metastases. Here we assessed the effect of CDDO-Im on liver metastasis, using B16F1 (mouse melanoma) and HT-29 (human colon carcinoma) cells. In vitro, nanomolar concentrations of CDDO-Im arrested proliferation or induced cell death in both cell lines. In vivo, cells were injected via a surgically exposed mesenteric vein to target cells to the liver of mice. Mice were then treated with CDDO-Im (800 mg/kg diet) or vehicle control. Livers were removed at endpoint and metastatic burden was quantified by standard histology. In addition, a novel whole liver magnetic resonance imaging (MRI) technique was used to assess the effect of CDDO-Im on growing metastases as well as on non-dividing, solitary cancer cells present in the same livers. CDDO-Im treatment significantly decreased liver metastasis burden in both HT-29 (n = 8 treated, 10 control) and B16F1 (n = 15 treated, 16 control) injected mice (>60%, P < 0.05), but did not reduce the numbers of solitary B16F1 cancer cells (hypo-intensity) in the same livers (P = 0.9). This study demonstrates that CDDO-Im may be useful for the treatment metastatic liver disease as it successfully inhibits growth of actively proliferating liver metastases.


Assuntos
Imidazóis/uso terapêutico , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Metástase Neoplásica/patologia , Ácido Oleanólico/análogos & derivados , Triterpenos/uso terapêutico , Animais , Morte Celular/efeitos dos fármacos , Feminino , Imidazóis/síntese química , Imidazóis/farmacologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Ácido Oleanólico/síntese química , Ácido Oleanólico/farmacologia , Ácido Oleanólico/uso terapêutico , Triterpenos/síntese química , Triterpenos/farmacologia
12.
Cancer Res ; 69(21): 8326-31, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19843857

RESUMO

The metastatic cell population, ranging from solitary cells to actively growing metastases, is heterogeneous and unlikely to respond uniformly to treatment. However, quantification of the entire experimental metastatic cell population in whole organs is complicated by requirements of an imaging modality with the large field of view and high spatial resolution necessary to detect both single cells and metastases in the same organ. Thus, it is difficult to assess differential responses of these distinct metastatic populations to therapy. Here, we develop a magnetic resonance imaging (MRI) technique capable of quantifying the full population of metastatic cells in a secondary organ. B16F1 mouse melanoma cells were labeled with micron-sized iron oxide particles (MPIO) and injected into mouse liver via the mesenteric vein. Livers were removed immediately or at day 9 or 11, following doxorubicin or vehicle control treatment, and imaged using a 3T clinical magnetic resonance scanner and custom-built gradient coil. Both metastases (>200 microm) and MPIO-labeled single cells were detected and quantified from MR images as areas of hyperintensity or hypointensity (signal voids), respectively. We found that 1mg/kg doxorubicin treatment inhibited metastasis growth (n = 11 per group; P = 0.02, t test) but did not decrease the solitary metastatic cell population in the same livers (P > 0.05). Thus, the technique presented here is capable of quickly quantifying the majority of the metastatic cell population, including both growing metastases and solitary cells, in whole liver by MRI and can identify differential responses of growing metastases and solitary cells to therapy.


Assuntos
Compostos Férricos , Imageamento Tridimensional , Neoplasias Hepáticas Experimentais/secundário , Imageamento por Ressonância Magnética , Melanoma Experimental/secundário , Animais , Antibióticos Antineoplásicos/uso terapêutico , Meios de Contraste , Doxorrubicina/uso terapêutico , Feminino , Processamento de Imagem Assistida por Computador , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Melanoma Experimental/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Prognóstico
13.
Breast Cancer Res ; 9(3): 208, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17561992

RESUMO

Delayed recurrences, common in breast cancer, are well explained by the concept of tumour dormancy. Numerous publications describe clinical times to disease recurrence or death, using mathematical approaches to infer mechanisms responsible for delayed recurrences. However, most of the clinical literature discussing tumour dormancy uses data from over a half century ago and much has since changed. This review explores how current breast cancer treatment could change our understanding of the biology of breast cancer tumour dormancy, and summarizes relevant experimental models to date. Current knowledge gaps are highlighted and potential areas of future research are identified.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Ciclofosfamida/administração & dosagem , Feminino , Fluoruracila/administração & dosagem , Humanos , Metotrexato/administração & dosagem , Neoplasia Residual/patologia , Recidiva , Fatores de Tempo
14.
Cell Cycle ; 5(16): 1744-50, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16861927

RESUMO

After arriving in a secondary site metastatic cells may begin proliferating, undergo apoptosis or remain as solitary dormant cells. The process of metastasis, although dangerous, is extremely inefficient with the majority of the cells undergoing apoptosis and thus becoming clinically irrelevant. Of the cells that begin proliferating, the few that make it past the micrometastasis stage may be of immediate clinical relevance. Dormant cells, while not of immediate clinical concern, are believed to be at least in part responsible for cancer recurrence that can occur decades after apparently successful initial treatment. Dormant solitary cells are different from "dormant" micrometastases, in which active proliferation is balanced by apoptosis. The mechanisms of cell cycle regulation and the function of the molecules regulating this process are well understood. However, there is relatively little known about the mechanisms controlling cell cycle regulation and dormancy of solitary metastatic cells. There are several inherent difficulties impeding the study of solitary cells. This review paper will examine the models used in the study of dormant solitary metastatic cells, methods of imaging and studying these cells, the molecular mechanisms believed to be responsible for solitary cell dormancy, and finally the unique treatment challenges posed by these cells.


Assuntos
Metástase Neoplásica/patologia , Neoplasias Experimentais/patologia , Células-Tronco Neoplásicas/patologia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Humanos , Camundongos , Microscopia/métodos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Metástase Neoplásica/prevenção & controle , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Coloração e Rotulagem/métodos
15.
Curr Mol Med ; 3(7): 631-42, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14601637

RESUMO

Metastasis, the process by which cancer spreads from a primary to a secondary site, is responsible for the majority of cancer related deaths. Yet despite the detrimental effects of metastasis, it is an extremely inefficient process by which very few of the cells that leave the primary tumor give rise to secondary tumors. Metastasis can be considered as a series of sequential steps that begins with a cell leaving a primary tumor, and concludes with the formation of a metastatic tumor in a distant site. During the process of metastasis cells are subjected to various apoptotic stimuli. Thus, in addition to genetic changes that promote unregulated proliferation, successful metastatic cells must have a decreased sensitivity to apoptotic stimuli. As many cancer cells exhibit aberrations in the level and function of key apoptotic regulators, exploiting these alterations to induce tumor cell apoptosis offers a promising therapeutic target. This review will examine the apoptotic regulators that are often aberrantly expressed in metastatic cells; the role that these regulators may play in metastasis; the steps of metastasis and their susceptibility to apoptosis; and finally, current and future cancer prognostics and treatment targets based on apoptotic regulators.


Assuntos
Apoptose/fisiologia , Metástase Neoplásica , Neoplasias , Animais , Regulação Neoplásica da Expressão Gênica , Genes bcl-2 , Humanos , Neoplasias/terapia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
16.
Breast Cancer Res Treat ; 82(3): 199-206, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14703067

RESUMO

Breast cancer is noted for long periods of tumor dormancy and metastases can occur many years after treatment. Adjuvant chemotherapy is used to prevent metastatic recurrence but is not always successful. As a model for studying mechanisms of dormancy, we have used two murine mammary carcinoma cell lines: D2.0R/R cells, which are poorly metastatic but form metastases in some mice after long latency times, and D2A1/R cells, which form more numerous metastases much earlier. Previously we identified a surprisingly large population of dormant but viable solitary cells, which persisted in an undivided state for up to 11 weeks after injection of D2.0R/R cells. Dormant cells were also detected for D2A1/R cells, in a background of growing metastases. Here we used this model to test the hypothesis that dormant tumor cells would not be killed by cytotoxic chemotherapy that targets actively dividing cells, and that the late development of metastases from D2.0R/R cells would not be inhibited by chemotherapy that effectively inhibited D2A1/R metastases. We injected mice with D2A1/R or D2.0R/R cells via a mesenteric vein to target liver. We developed a doxorubicin (DXR) treatment protocol that effectively reduced the metastatic tumor burden from D2A1/R cells at 3 weeks. However, this treatment did not reduce the numbers of solitary dormant cells in mice injected with either D2A1/R or D2.0R/R cells. Furthermore, DXR did not reduce the metastatic tumor burden after an 11-week latency period in mice injected with D2.0R/R cells. Thus, apparently effective chemotherapy may spare non-dividing cancer cells, and these cells may give rise to metastases at a later date. This study has important clinical implications for patients being treated with cytotoxic chemotherapy.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Neoplasias Hepáticas Experimentais/secundário , Neoplasias Mamárias Experimentais/patologia , Animais , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos SCID , Metástase Neoplásica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA