Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 136(7)2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36897575

RESUMO

Morphogens provide quantitative and robust signaling systems to achieve stereotypic patterning and morphogenesis. Heparan sulfate (HS) proteoglycans (HSPGs) are key components of such regulatory feedback networks. In Drosophila, HSPGs serve as co-receptors for a number of morphogens, including Hedgehog (Hh), Wingless (Wg), Decapentaplegic (Dpp) and Unpaired (Upd, or Upd1). Recently, Windpipe (Wdp), a chondroitin sulfate (CS) proteoglycan (CSPG), was found to negatively regulate Upd and Hh signaling. However, the roles of Wdp, and CSPGs in general, in morphogen signaling networks are poorly understood. We found that Wdp is a major CSPG with 4-O-sulfated CS in Drosophila. Overexpression of wdp modulates Dpp and Wg signaling, showing that it is a general regulator of HS-dependent pathways. Although wdp mutant phenotypes are mild in the presence of morphogen signaling buffering systems, this mutant in the absence of Sulf1 or Dally, molecular hubs of the feedback networks, produces high levels of synthetic lethality and various severe morphological phenotypes. Our study indicates a close functional relationship between HS and CS, and identifies the CSPG Wdp as a novel component in morphogen feedback pathways.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Proteoglicanas de Sulfatos de Condroitina/genética , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteoglicanas de Heparan Sulfato/genética , Proteoglicanas de Heparan Sulfato/metabolismo , Sulfatases/genética , Sulfatases/metabolismo , Proteína Wnt1/genética , Proteína Wnt1/metabolismo
2.
Biomolecules ; 11(4)2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805466

RESUMO

We developed two human-induced pluripotent stem cell (hiPSC)/human embryonic stem cell (hESC)-specific glycan-recognizing mouse antibodies, R-10G and R-17F, using the Tic (JCRB1331) hiPSC line as an antigen. R-10G recognizes a low-sulfate keratan sulfate, and R-17F recognizes lacto-N-fucopentaose-1. To evaluate the general characteristics of stem cell glycans, we investigated the hiPSC line 201B7 (HPS0063), a prototype iPSC line. Using an R-10G affinity column, an R-10G-binding protein was isolated from 201B7 cells. The protein yielded a single but very broad band from 480 to 1236 kDa by blue native gel electrophoresis. After trypsin digestion, the protein was identified as podocalyxin by liquid chromatography/mass spectrometry. According to Western blotting, the protein reacted with R-10G and R-17F. The R-10G-positive band was resistant to digestion with glycan-degrading enzymes, including peptide N-glycanase, but the intensity of the band was decreased significantly by digestion with keratanase, keratanase II, and endo-ß-galactosidase, suggesting the R-10G epitope to be a keratan sulfate. These results suggest that keratan sulfate-type epitopes are shared by hiPSCs. However, the keratan sulfate from 201B7 cells contained a polylactosamine disaccharide unit (Galß1-4GlcNAc) at a significant frequency, whereas that from Tic cells consisted mostly of keratan sulfate disaccharide units (Galß1-4GlcNAc(6S)). In addition, the abundance of the R-10G epitope was significantly lower in 201B7 cells than in Tic cells.


Assuntos
Anticorpos Monoclonais/imunologia , Epitopos/análise , Polissacarídeos/análise , Acetilglucosaminidase/metabolismo , Cromatografia Líquida de Alta Pressão , Epitopos/imunologia , Epitopos/metabolismo , Glicosídeo Hidrolases/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Peptídeos/análise , Polissacarídeos/imunologia , Polissacarídeos/metabolismo , Espectrometria de Massas em Tandem
3.
Anal Sci ; 35(5): 517-520, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-30606909

RESUMO

An analytical method for the determination of sialic acids in biological samples has been developed and applied to fetal bovine serum (FBS), newborn calf serum and adult bovine serum. The hydrolysis of sera was carried out and the liberated sialic acids were quantified using a rapid and sensitive HPLC. The HPLC includes the separation and detection of N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc) using hydrophilic interaction liquid chromatography and a fluorometric post-column reaction with 2-cyanoacetamide. The calibration graphs for Neu5Ac and Neu5Gc were linear over the range of 10 pmol - 5 nmol. The concentrations of sialic acids in FBS, newborn calf serum and adult bovine serum were 5.06, 3.79 and 1.64 mM, respectively. The ratios of Neu5Gc and Neu5Ac changed dramatically according to the development stages. The present method has a satisfactory sensitivity in the quantification of Neu5Ac and Neu5Gc in serum samples. It seems that this analytical system can therefore be applied for routine use in clinical investigations of serum sialylation changes in cancer patients.


Assuntos
Fluorometria , Ácidos Siálicos/sangue , Animais , Bovinos , Cromatografia Líquida de Alta Pressão , Interações Hidrofóbicas e Hidrofílicas
4.
Glycoconj J ; 34(6): 817-823, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28980094

RESUMO

Podocalyxin (PC) was first identified as a heavily sialylated transmembrane protein of glomerular podocytes. Recent studies suggest that PC is a remarkable glycoconjugate that acts as a universal glyco-carrier. The glycoforms of PC are responsible for multiple functions in normal tissue, human cancer cells, human embryonic stem cells (hESCs), and human induced pluripotent stem cells (hiPSCs). PC is employed as a major pluripotent marker of hESCs and hiPSCs. Among the general antibodies for human PC, TRA-1-60 and TRA-1-81 recognize the keratan sulfate (KS)-related structures. Therefore, It is worthwhile to summarize the outstanding chemical characteristic of PC, including the KS-related structures. Here, we review the glycoforms of PC and discuss the potential of PC as a novel KS proteoglycan in undifferentiated hESCs and hiPSCs.


Assuntos
Células-Tronco Embrionárias/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Sialoglicoproteínas/metabolismo , Humanos , Sialoglicoproteínas/química , Sialoglicoproteínas/genética
5.
Glycoconj J ; 34(2): 139-145, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28078490

RESUMO

Podocalyxin (PC) was first identified as a heavily sialylated transmembrane protein of glomerular podocytes. Recent studies suggest that PC is a remarkable glycoconjugate that acts as a universal glyco-carrier. The glycoforms of PC are responsible for multiple functions in normal tissue, human cancer cells, human embryonic stem cells (hESCs), and human induced pluripotent stem cells (hiPSCs). PC is employed as a major pluripotent marker of hESCs and hiPSCs. Among the general antibodies for human PC, TRA-1-60 and TRA-1-81 recognize the keratan sulfate (KS)-related structures. Therefore, It is worthwhile to summarize the outstanding chemical characteristic of PC, including the KS-related structures. Here, we review the glycoforms of PC and discuss the potential of PC as a novel KS proteoglycan in undifferentiated hESCs and hiPSCs.


Assuntos
Antígenos de Diferenciação/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Sulfato de Queratano/metabolismo , Sialoglicoproteínas/metabolismo , Anticorpos/química , Humanos
6.
J Biol Chem ; 290(33): 20071-85, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26100630

RESUMO

We have generated a mouse monoclonal antibody (R-17F, IgG1 subtype) specific to human induced pluripotent stem (hiPS)/embryonic stem (ES) cells by using a hiPS cell line as an antigen. Triple-color confocal immunostaining images of hiPS cells with R-17F indicated that the R-17F epitope was expressed exclusively and intensively on the cell membranes of hiPS cells and co-localized partially with those of SSEA-4 and SSEA-3. Lines of evidence suggested that the predominant part of the R-17F epitope was a glycolipid. Upon TLC blot of total lipid extracts from hiPS cells with R-17F, one major R-17F-positive band was observed at a slow migration position close to that of anti-blood group H1(O) antigen. MALDI-TOF-MS and MS(n) analyses of the purified antigen indicated that the presumptive structure of the R-17F antigen was Fuc-Hex-HexNAc-Hex-Hex-Cer. Glycan microarray analysis involving 13 different synthetic oligosaccharides indicated that R-17F bound selectively to LNFP I (Fucα1-2Galß1-3GlcNAcß1-3Galß1-4Glc). A critical role of the terminal Fucα1-2 residue was confirmed by the selective disappearance of R-17F binding to the purified antigen upon α1-2 fucosidase digestion. Most interestingly, R-17F, when added to hiPS/ES cell suspensions, exhibited potent dose-dependent cytotoxicity. The cytotoxic effect was augmented markedly upon the addition of the secondary antibody (goat anti-mouse IgG1 antibody). R-17F may be beneficial for safer regenerative medicine by eliminating residual undifferentiated hiPS cells in hiPS-derived regenerative tissues, which are considered to be a strong risk factor for carcinogenesis.


Assuntos
Anticorpos/imunologia , Citotoxicidade Imunológica , Células-Tronco Pluripotentes Induzidas/metabolismo , Oligossacarídeos/imunologia , Sequência de Carboidratos , Linhagem Celular , Humanos , Dados de Sequência Molecular , Oligossacarídeos/química
7.
Biol Pharm Bull ; 38(1): 127-33, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25744468

RESUMO

Induced pluripotent stem cells (iPSCs) offer an invaluable tool for biological research and regenerative medicine. We report establishment of rat iPSCs (riPSCs) using a plasmid vector encoding four transcription factors, Oct3/4, Sox2, c-Myc and Klf4. Although all riPSC clones were generated and cultured under the same conditions, expressed hallmark pluripotency markers and differentiated successfully in vitro, the expression of a keratan sulfate glycan epitope with unique properties defined by R-10G antibody varied in the riPSC clones. In contrast, tumor rejection antigen (TRA)-1-81 epitope expression was comparable. A clone highly reactive to R-10G antibody formed teratomas in vivo consisting of cells from all three germ layers. However, clones expressing a lower level of the epitope defined by R-10G resulted in tumors with rapid growth consisting of undifferentiated cells. Additionally, riPSCs could be successfully differentiated into a neuronal lineage including glutamate neurons that responded to agonist stimulation. These observations demonstrate a glycophenotypic difference that may potentially serve as a useful probe for riPSC evaluation and to study the role of glycans in pluripotency and carcinogenesis in these cells.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Sulfato de Queratano/imunologia , Plasmídeos , Animais , Anticorpos/imunologia , Antígenos de Superfície/imunologia , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Fator 3 de Transcrição de Octâmero/metabolismo , Fenótipo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ratos Wistar , Fatores de Transcrição SOXB1/metabolismo , Teratoma
8.
Glycobiology ; 23(3): 322-36, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23154990

RESUMO

We have generated a monoclonal antibody (R-10G) specific to human induced pluripotent stem (hiPS)/embryonic stem (hES) cells by using hiPS cells (Tic) as an antigen, followed by differential screening of mouse hybridomas with hiPS and human embryonal carcinoma (hEC) cells. Upon western blotting with R-10G, hiPS/ES cell lysates gave a single but an unusually diffuse band at a position corresponding to >250 kDa. The antigen protein was isolated from the induced pluripotent stem (iPS) cell lysates with an affinity column of R-10G. The R-10G positive band was resistant to digestion with peptide N-glycanase F (PNGase F), neuraminidase, fucosidase, chondrotinase ABC and heparinase mix, but it disappeared almost completely on digestion with keratanase, keratanase II and endo-ß-galactosidase, indicating that the R-10G epitope is a keratan sulfate. The carrier protein of the R-10G epitope was identified as podocalyxin by liquid chromatography/mass spectrometry (LC/MS/MS) analysis of the R-10G positive-protein band material obtained on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The R-10G epitope is a type of keratan sulfate with some unique properties. (1) The epitope is expressed only on hiPS/ES cells, i.e. not on hEC cells, unlike those recognized by the conventional hiPS/ES marker antibodies. (2) The epitope is a type of keratan sulfate lacking oversulfated structures and is not immunologically cross-reactive with high-sulfated keratan sulfate. (3) The R-10G epitope is distributed heterogeneously on hiPS cells, suggesting that a single colony of undifferentiated hiPS cells consists of different cell subtypes. Thus, R-10G is a novel antibody recognizing hiPS/ES cells, and should be a new molecular probe for disclosing the roles of glycans on these cells.


Assuntos
Anticorpos Monoclonais/imunologia , Células-Tronco Embrionárias/imunologia , Células-Tronco Pluripotentes Induzidas/imunologia , Sulfato de Queratano/imunologia , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação , Linhagem Celular Tumoral , Epitopos/imunologia , Humanos , Sulfato de Queratano/química , Camundongos , Camundongos Endogâmicos C57BL
9.
PLoS One ; 4(12): e8262, 2009 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-20011239

RESUMO

Recently, we have identified two 3'-phosphoadenosine 5'-phosphosulfate (PAPS) transporters (PAPST1 and PAPST2), which contribute to PAPS transport into the Golgi, in both human and Drosophila. Mutation and RNA interference (RNAi) of the Drosophila PAPST have shown the importance of PAPST-dependent sulfation of carbohydrates and proteins during development. However, the functional roles of PAPST in mammals are largely unknown. Here, we investigated whether PAPST-dependent sulfation is involved in regulating signaling pathways required for the maintenance of mouse embryonic stem cells (mESCs), differentiation into the three germ layers, and neurogenesis. By using a yeast expression system, mouse PAPST1 and PAPST2 proteins were shown to have PAPS transport activity with an apparent K(m) value of 1.54 microM or 1.49 microM, respectively. RNAi-mediated knockdown of each PAPST induced the reduction of chondroitin sulfate (CS) chain sulfation as well as heparan sulfate (HS) chain sulfation, and inhibited mESC self-renewal due to defects in several signaling pathways. However, we suggest that these effects were due to reduced HS, not CS, chain sulfation, because knockdown of mouse N-deacetylase/N-sulfotransferase, which catalyzes the first step of HS sulfation, in mESCs gave similar results to those observed in PAPST-knockdown mESCs, but depletion of CS chains did not. On the other hand, during embryoid body formation, PAPST-knockdown mESCs exhibited abnormal differentiation, in particular neurogenesis was promoted, presumably due to the observed defects in BMP, FGF and Wnt signaling. The latter were reduced as a result of the reduction in both HS and CS chain sulfation. We propose that PAPST-dependent sulfation of HS or CS chains, which is regulated developmentally, regulates the extrinsic signaling required for the maintenance and normal differentiation of mESCs.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Diferenciação Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Fosfoadenosina Fosfossulfato/metabolismo , Animais , Proteínas de Transporte de Ânions/genética , Proliferação de Células , Sulfatos de Condroitina/metabolismo , Regulação para Baixo , Embrião de Mamíferos/citologia , Técnicas de Silenciamento de Genes , Camadas Germinativas/citologia , Heparitina Sulfato/metabolismo , Cinética , Camundongos , Modelos Biológicos , Neurogênese , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Especificidade por Substrato , Sulfatos/metabolismo
10.
J Biol Chem ; 283(10): 6076-84, 2008 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-18165227

RESUMO

Heparan sulfate proteoglycan plays an important role in developmental processes by modulating the distribution and stability of the morphogens Wingless, Hedgehog, and Decapentaplegic. Heparan and chondroitin sulfates share a common linkage tetrasaccharide structure, GlcAbeta1,3Galbeta1,3Galbeta1,4Xylbeta-O-Ser. In the present study, we identified Drosophila proteoglycan galactosyltransferase II (dbeta3GalTII), determined its substrate specificity, and performed its functional analysis by using RNA interference (RNAi) mutant flies. The enzyme transferred a galactose to Galbeta1,4Xyl-pMph, confirming that it is the Drosophila ortholog of human proteoglycan galactosyltransferase II. Real-time PCR analyses revealed that dbeta3GalTII is expressed in various tissues and throughout development. The dbeta3GalTII RNAi mutant flies showed decreased amounts of heparan sulfate proteoglycans. A genetic interaction of dbeta3GalTII with Drosophila beta1,4-galactoslyltransferase 7 (dbeta4GalT7) or with six genes that encode enzymes contributing to the synthesis of glycosaminoglycans indicated that dbeta3GalTII is involved in heparan sulfate synthesis for wing and eye development. Moreover, dbeta3GalTII knock-down caused a decrease in extracellular Wingless in the wing imaginal disc of the third instar larvae. These results demonstrated that dbeta3GalTII contributes to heparan sulfate proteoglycan synthesis in vitro and in vivo and also modulates Wingless distribution.


Assuntos
Sulfatos de Condroitina/biossíntese , Galactosiltransferases/metabolismo , Heparitina Sulfato/biossíntese , Oligossacarídeos/biossíntese , Proteoglicanas/biossíntese , Interferência de RNA , Animais , Sulfatos de Condroitina/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Galactosiltransferases/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Heparitina Sulfato/genética , Larva/enzimologia , Larva/genética , Mutação , Proteoglicanas/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Especificidade por Substrato , Proteína Wnt1
11.
J Biol Chem ; 283(6): 3594-3606, 2008 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-18024963

RESUMO

Embryonic stem (ES) cell self-renewal and pluripotency are maintained by several signaling cascades and by expression of intrinsic factors, such as Oct3/4 and Nanog. The signaling cascades are activated by extrinsic factors, such as leukemia inhibitory factor, bone morphogenic protein, and Wnt. However, the mechanism that regulates extrinsic signaling in ES cells is unknown. Heparan sulfate (HS) chains are ubiquitously present as the cell surface proteoglycans and are known to play crucial roles in regulating several signaling pathways. Here we investigated whether HS chains on ES cells are involved in regulating signaling pathways that are important for the maintenance of ES cells. RNA interference-mediated knockdown of HS chain elongation inhibited mouse ES cell self-renewal and induced spontaneous differentiation of the cells into extraembryonic endoderm. Furthermore, autocrine/paracrine Wnt/beta-catenin signaling through HS chains was found to be required for the regulation of Nanog expression. We propose that HS chains are important for the extrinsic signaling required for mouse ES cell self-renewal and pluripotency.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica , Heparitina Sulfato/farmacologia , Células-Tronco Pluripotentes/citologia , Animais , Técnicas de Cultura de Células/instrumentação , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Endoderma/metabolismo , Humanos , Camundongos , Modelos Biológicos , Transdução de Sinais , Proteínas Wnt/metabolismo , Proteína Wnt3
12.
Nat Med ; 13(11): 1363-7, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17952091

RESUMO

Proteoglycans are a family of extracellular macromolecules comprised of glycosaminoglycan chains of a repeated disaccharide linked to a central core protein. Proteoglycans have critical roles in chondrogenesis and skeletal development. The glycosaminoglycan chains found in cartilage proteoglycans are primarily composed of chondroitin sulfate. The integrity of chondroitin sulfate chains is important to cartilage proteoglycan function; however, chondroitin sulfate metabolism in mammals remains poorly understood. The solute carrier-35 D1 (SLC35D1) gene (SLC35D1) encodes an endoplasmic reticulum nucleotide-sugar transporter (NST) that might transport substrates needed for chondroitin sulfate biosynthesis. Here we created Slc35d1-deficient mice that develop a lethal form of skeletal dysplasia with severe shortening of limbs and facial structures. Epiphyseal cartilage in homozygous mutant mice showed a decreased proliferating zone with round chondrocytes, scarce matrices and reduced proteoglycan aggregates. These mice had short, sparse chondroitin sulfate chains caused by a defect in chondroitin sulfate biosynthesis. We also identified that loss-of-function mutations in human SLC35D1 cause Schneckenbecken dysplasia, a severe skeletal dysplasia. Our findings highlight the crucial role of NSTs in proteoglycan function and cartilage metabolism, thus revealing a new paradigm for skeletal disease and glycobiology.


Assuntos
Osso e Ossos/embriologia , Cartilagem/embriologia , Sulfatos de Condroitina/biossíntese , Proteínas de Transporte de Monossacarídeos/fisiologia , Proteínas de Transporte de Nucleotídeos/fisiologia , Animais , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Cartilagem/metabolismo , Cartilagem/patologia , Células Cultivadas , Condrócitos/metabolismo , Condrócitos/patologia , Epífises/embriologia , Epífises/metabolismo , Epífises/patologia , Ossos Faciais/anormalidades , Ossos Faciais/embriologia , Ossos Faciais/metabolismo , Humanos , Deformidades Congênitas dos Membros/embriologia , Deformidades Congênitas dos Membros/genética , Deformidades Congênitas dos Membros/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas de Transporte de Monossacarídeos/deficiência , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Nucleotídeos/genética
13.
Cancer Sci ; 98(10): 1577-81, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17645579

RESUMO

The presence of a chondroitin sulfate (CS) chain on human thyroglobulin (Tg) distinguishes it from Tg of other species; the role played by this chain in normal thyroid function is unclear. In the present study, we determined the structure of the CS oligosaccharides in human thyroid-derived Tg. Q-Sepharose anion exchange column chromatography of thyroid extracts indicated that the negative charge of human Tg was primarily due to the presence of the CS chain. Interestingly, the Tg of papillary carcinomas was less negatively charged, suggesting that its CS side chain was less sulfated. Structural analysis of the CS in Tg revealed that its most abundant disaccharide is the DeltaDi-0S unit (50.2 +/- 18.3%), which is not sulfated. The DeltaDi-0S, DeltaDi-6S (31.7 +/- 13.7%) and DeltaDi-diSD (12.8 +/- 4.3%) units comprise more than 90% of the disaccharides in normal Tg. However, the DeltaDi-6S (0.0-21.2%) and DeltaDi-diSD (0.0-7.7%) units were significantly reduced in Tg extracted from papillary thyroid carcinomas, whereas DeltaDi-0S (86.0 +/- 21.3%) was increased. These results suggest that the Tg in papillary carcinomas has a less sulfated CS side chain and, by virtue of that fact, is less negatively charged. What role this change in carcinoma cells has in their transformation and spread remains to be determined.


Assuntos
Carcinoma Papilar/metabolismo , Sulfatos de Condroitina/metabolismo , Tireoglobulina/metabolismo , Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Carcinoma Papilar/patologia , Dissacarídeos/metabolismo , Humanos , Immunoblotting , Neoplasias da Glândula Tireoide/patologia
14.
J Biol Chem ; 281(39): 28508-17, 2006 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-16873373

RESUMO

Sulfation of macromolecules requires the translocation of a high energy form of nucleotide sulfate, i.e. 3'-phosphoadenosine 5'-phosphosulfate (PAPS), from the cytosol into the Golgi apparatus. In this study, we identified a novel Drosophila PAPS transporter gene dPAPST2 by conducting data base searches and screening the PAPS transport activity among the putative nucleotide sugar transporter genes in Drosophila. The amino acid sequence of dPAPST2 showed 50.5 and 21.5% homology to the human PAPST2 and SLALOM, respectively. The heterologous expression of dPAPST2 in yeast revealed that the dPAPST2 protein is a PAPS transporter with an apparent K(m) value of 2.3 microm. The RNA interference of dPAPST2 in cell line and flies showed that the dPAPST2 gene is essential for the sulfation of cellular proteins and the viability of the fly. In RNA interference flies, an analysis of the genetic interaction between dPAPST2 and genes that contribute to glycosaminoglycan synthesis suggested that dPAPST2 is involved in the glycosaminoglycan synthesis and the subsequent signaling. The dPAPST2 and sll genes showed a similar ubiquitous distribution. These results indicate that dPAPST2 may be involved in Hedgehog and Decapentaplegic signaling by controlling the sulfation of heparan sulfate.


Assuntos
Proteínas de Transporte de Ânions/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/metabolismo , Fosfoadenosina Fosfossulfato/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Transporte de Ânions/química , Transporte Biológico , Proteínas de Drosophila/química , Glicosaminoglicanos/metabolismo , Humanos , Dados de Sequência Molecular , Filogenia , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Asas de Animais/metabolismo
15.
Biochim Biophys Acta ; 1721(1-3): 1-8, 2005 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-15652173

RESUMO

The isolation, purification and structural characterization of human liver heparan sulfate are described. 1H-NMR spectroscopy demonstrates the purity of this glycosaminoglycan (GAG) and two-dimensional 1H-NMR confirmed that it was heparan sulfate. Enzymatic depolymerization of the isolated heparan sulfate, followed by gradient polyacrylamide gel, confirmed its heparin lyase sensitivity. The concentration of resulting unsaturated disaccharides was determined using reverse phase ion-pairing (RPIP) HPLC with post column derivatization and fluorescence detection. The results of this analysis clearly demonstrate that the isolated GAG was heparan sulfate, not heparin. Human liver heparan sulfate was similar to heparin in that it has a reduced content of unsulfated disaccharide and an elevated average sulfation level. The antithrombin-mediated anti-factor Xa activity of human liver heparan sulfate, however, was much lower than porcine intestinal (pharmaceutical) heparin but was comparable to standard porcine intestinal heparan sulfate. Moreover, human liver heparan sulfate shows higher degree of sulfation than heparan sulfate isolated from porcine liver or from the human hepatoma Hep 2G cell line.


Assuntos
Heparitina Sulfato/química , Fígado/química , Humanos , Peso Molecular , Ressonância Magnética Nuclear Biomolecular
16.
J Biol Chem ; 278(42): 41003-12, 2003 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-12867431

RESUMO

The conservation of positively charged residues in the N terminus of the hepatitis C virus (HCV) envelope glycoprotein E2 suggests an interaction of the viral envelope with cell surface glycosaminoglycans. Using recombinant envelope glycoprotein E2 and virus-like particles as ligands for cellular binding, we demonstrate that cell surface heparan sulfate proteoglycans (HSPG) play an important role in mediating HCV envelope-target cell interaction. Heparin and liver-derived highly sulfated heparan sulfate but not other soluble glycosaminoglycans inhibited cellular binding and entry of virus-like particles in a dose-dependent manner. Degradation of cell surface heparan sulfate by pretreatment with heparinases resulted in a marked reduction of viral envelope protein binding. Surface plasmon resonance analysis demonstrated a high affinity interaction (KD 5.2 x 10-9 m) of E2 with heparin, a structural homologue of highly sulfated heparan sulfate. Deletion of E2 hypervariable region-1 reduced E2-heparin interaction suggesting that positively charged residues in the N-terminal E2 region play an important role in mediating E2-HSPG binding. In conclusion, our results demonstrate for the first time that cellular binding of HCV envelope requires E2-HSPG interaction. Docking of E2 to cellular HSPG may be the initial step in the interaction between HCV and the cell surface resulting in receptor-mediated entry and initiation of infection.


Assuntos
Membrana Celular/metabolismo , Heparitina Sulfato/metabolismo , Proteínas do Envelope Viral/química , Linhagem Celular , Cloratos/farmacologia , Dimerização , Dissacarídeos/química , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Deleção de Genes , Humanos , Cinética , Ligantes , Ligação Proteica , Estrutura Terciária de Proteína , Ressonância de Plasmônio de Superfície , Temperatura , Fatores de Tempo , Proteínas do Envelope Viral/metabolismo
17.
J Biol Chem ; 278(28): 25958-63, 2003 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-12716889

RESUMO

Nucleotide sulfate, namely 3'-phosphoadenosine 5'-phosphosulfate (PAPS), is a universal sulfuryl donor for sulfation. Although a specific PAPS transporter is present in Golgi membrane, no study has reported the corresponding gene. We have identified a novel human gene encoding a PAPS transporter, which we have named PAPST1, and the Drosophila melanogaster ortholog, slalom (sll). The amino acid sequence of PAPST1 (432 amino acids) exhibited 48.1% identity with SLL (465 amino acids), and hydropathy analysis predicted the two to be type III transmembrane proteins. The transient expression of PAPST1 in SW480 cells showed a subcellular localization in Golgi membrane. The expression of PAPST1 and SLL in yeast Saccharomyces cerevisiae significantly increased the transport of PAPS into the Golgi membrane fraction. In human tissues, PAPST1 is highly expressed in the placenta and pancreas and present at lower levels in the colon and heart. An RNA interference fly of sll produced with a GAL4-UAS system revealed that the PAPS transporter is essential for viability. It is well known that mutations of some genes related to PAPS synthesis are responsible for human inherited disorders. Our findings provide insights into the significance of PAPS transport and post-translational sulfation.


Assuntos
Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Fosfoadenosina Fosfossulfato/metabolismo , Sequência de Aminoácidos , Animais , Transporte Biológico , Western Blotting , Membrana Celular/metabolismo , Clonagem Molecular , Colo/metabolismo , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Proteínas de Drosophila/química , Drosophila melanogaster , Complexo de Golgi/metabolismo , Humanos , Microscopia de Fluorescência , Dados de Sequência Molecular , Miocárdio/metabolismo , Pâncreas/metabolismo , Filogenia , Plasmídeos/metabolismo , Processamento de Proteína Pós-Traducional , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Frações Subcelulares , Especificidade por Substrato , Transportadores de Sulfato , Distribuição Tecidual , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA