Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cell Biochem ; 121(2): 1238-1249, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31478242

RESUMO

α-Amylase, which plays an essential role in starch degradation, is expressed mainly in the pancreas and salivary glands. Human α-amylase is also detected in other tissues, but it is unclear whether the α-amylase is endogenously expressed in each tissue or mixed exogenously with one expressed by the pancreas or salivary glands. Furthermore, the biological significance of these α-amylases detected in tissues other than the pancreas and salivary glands has not been elucidated. We discovered that human α-amylase is expressed in intestinal epithelial cells and analyzed the effects of suppressing α-amylase expression. α-Amylase was found to be expressed at the second-highest messenger RNA level in the duodenum in human normal tissues after the pancreas. α-Amylase was detected in the cell extract of Caco-2 intestinal epithelial cells but not secreted into the culture medium. The amount of α-amylase expressed increased depending on the length of the culture of Caco-2 cells, suggesting that α-amylase is expressed in small intestine epithelial cells rather than the colon because the cells differentiate spontaneously upon reaching confluence in culture to exhibit the characteristics of small intestinal epithelial cells rather than colon cells. The α-amylase expressed in Caco-2 cells had enzymatic activity and was identified as AMY2B, one of the two isoforms of pancreatic α-amylase. The suppression of α-amylase expression by small interfering RNA inhibited cell differentiation and proliferation. These results demonstrate for the first time that α-amylase is expressed in human intestinal epithelial cells and affects cell proliferation and differentiation. This α-amylase may induce the proliferation and differentiation of small intestine epithelial cells, supporting a rapid turnover of cells to maintain a healthy intestinal lumen.


Assuntos
Diferenciação Celular/genética , Proliferação de Células/genética , Células Epiteliais/metabolismo , Intestino Delgado/metabolismo , alfa-Amilases Pancreáticas/metabolismo , alfa-Amilases Salivares/metabolismo , Células CACO-2 , Expressão Gênica , Humanos , Pâncreas/metabolismo , alfa-Amilases Pancreáticas/genética , Interferência de RNA , RNA Mensageiro/genética , Glândulas Salivares/metabolismo , alfa-Amilases Salivares/genética , Transfecção
2.
Plant Signal Behav ; 14(10): e1644594, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31342859

RESUMO

The present research examines the possibility of finding bio-molecular compounds from the double cherry blossom (termed as 'Gosen-Sakura' of Gosen-city, Niigata-prefecture, Japan) leaves, which have been long used in the preparation of the traditional Japanese sweet (wagashi) - 'sakura-mochi'. Based on its indicated anti-microbial properties historically, our study provides a new low temperature vacuum extraction method for extracting 'near natural form of water soluble leaf (cell) extracts from the Gosen-Sakura, and demonstrates the presence of some 'novel' compound(s) with anti-tumor cell lines proliferation inhibitory affects through the MTT assay. To our knowledge, no reports exist on the sakura tree 'leaf (cell) extracts' inhibiting tumor cell line growth. We further examined and compared the effects of known compounds with anti-tumor activity, coumarin and benzyl alcohol with Gosen-Sakura leaf extract; results lead us to hypothesize that the Gosen-Sakura leaf extract contains substance(s) other than the above two known compounds, with antitumor effect. Additionally, we speculate on the underlying mechanism of action of the Gosen-Sakura leaf extract by targeting cell division at the point of DNA synthesis and causing apoptosis. In conclusion, we present scientific evidence on the presence of certain 'novel' biomolecule(s), with anti-tumor activity, in the Gosen-Sakura leaf which has been long used in Japanese sweet - the 'sakura-mochi'.


Assuntos
Temperatura Baixa , Flores/química , Compostos Fitoquímicos/farmacologia , Folhas de Planta/química , Prunus/química , Vácuo , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Extratos Vegetais/farmacologia
3.
Int J Pharm ; 565: 294-305, 2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31078647

RESUMO

We performed in vivo/ex vivo/polyacrylamide gel electrophoresis (PAGE) fluorescence imaging of near-infrared fluorescence (NIRF)-labeled siRNA (Cy5.5-siGL3) in mice to investigate the validity of each fluorescence imaging result as the biodistribution/biostability assessment of siRNA. Statistically significant correlations could be obtained between the in vivo and ex vivo fluorescence intensities of Cy5.5 in the relevant regions/tissues, except the lung region/tissue after intravenous administration. On PAGE fluorescence images with the naked formulation, there was no band corresponding to intact Cy5.5-siGL3 from all the tissues evaluated after intravenous administration, indicating that the fluorescence detected by in vivo and ex vivo fluorescence imaging was derived from degraded Cy5.5-siGL3 or free Cy5.5 cleaved from Cy5.5-siGL3. However, the band was detected from the lungs after intratracheal administration of the naked formulation, confirming higher stability of siRNA on the respiratory epithelium than in the blood. Regarding the polyethyleneimine formulation, the band was detected from all the tissues evaluated after intravenous administration and from the lungs after intratracheal administration, verifying the enhanced stability of siRNA in the body. These results clearly indicated the necessity of comprehensive analysis from in vivo/ex vivo/PAGE fluorescence imaging to precisely assess the distribution and stability of NIRF-labeled oligonucleotides including siRNA in the body.


Assuntos
Carbocianinas/administração & dosagem , Polietilenoimina/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Administração por Inalação , Administração Intravenosa , Animais , Carbocianinas/farmacocinética , Linhagem Celular Tumoral , Eletroforese em Gel de Poliacrilamida , Feminino , Humanos , Luciferases de Vaga-Lume/genética , Pulmão/metabolismo , Camundongos Endogâmicos ICR , Imagem Óptica , Polietilenoimina/farmacocinética , RNA Interferente Pequeno/farmacocinética , Distribuição Tecidual
4.
Invest Ophthalmol Vis Sci ; 43(11): 3538-49, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12407166

RESUMO

PURPOSE: Inferential evidence indicates that macular pigments (lutein and zeaxanthin) protect photoreceptors and/or retard age-related macular degeneration. These experiments tested the hypothesis that retinal zeaxanthin prevents light-induced photoreceptor cell death. METHODS: Retinal damage was assessed in quail fed a carotenoid-deficient (C-) diet for 6 months. Groups of 16 birds (8 male, 8 female) were fed a C- diet supplemented with 35 mg 3R,3'R-zeaxanthin for 1, 3, or 7 days; one group was continued on C- diets. Half of each group was exposed to intermittent 3200-lux white light (10 1-hour intervals separated by 2 hours in dark). After 14 additional hours in the dark, one retina of each quail was collected for HPLC analysis, and the contralateral retina was embedded in paraffin for counts of apoptotic nuclei. RESULTS: After 7 days' supplementation, concentrations of zeaxanthin in serum, liver, and fat had increased by factors of 50.8, 43.2, and 6.5, respectively (all P < 0.001). In contrast, retinal zeaxanthin fluctuated significantly upward on day 3, but there was no net change on day 7. The number of apoptotic rods and cones in light-damaged eyes correlated significantly and inversely with zeaxanthin concentration in the contralateral retina (r = -0.61; P < 0.0001 and r = -0.54; P < 0.002), but not with serum zeaxanthin. Similar correlations were observed with retinal lutein, which correlated strongly with retinal zeaxanthin (r = 0.95; P < 0.0001). CONCLUSIONS: Retinal zeaxanthin dose dependently reduced light-induced photoreceptor apoptosis; elevated serum levels did not. These data provide the first experimental evidence that xanthophyll carotenoids protect photoreceptors in vivo.


Assuntos
Apoptose/efeitos da radiação , Células Fotorreceptoras de Vertebrados/efeitos da radiação , Lesões Experimentais por Radiação/prevenção & controle , Degeneração Retiniana/prevenção & controle , beta Caroteno/análogos & derivados , beta Caroteno/administração & dosagem , Tecido Adiposo/metabolismo , Animais , Contagem de Células , Cromatografia Líquida de Alta Pressão , Coturnix , Citoproteção , Dieta , Feminino , Luz , Fígado/metabolismo , Luteína/administração & dosagem , Masculino , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , Lesões Experimentais por Radiação/metabolismo , Lesões Experimentais por Radiação/patologia , Retina/metabolismo , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Xantofilas , Zeaxantinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA