Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant J ; 119(5): 2236-2254, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38981008

RESUMO

The Greater Cape Floristic Region (GCFR) is renowned for its exceptional biodiversity, accommodating over 11 000 plant species, notable degree of endemism, and substantial diversification within limited plant lineages, a phenomenon ascribed to historical radiation events. While both abiotic and biotic factors contribute to this diversification, comprehensive genomic alterations, recognized as pivotal in the diversification of angiosperms, are perceived as uncommon. This investigation focuses on the genus Pteronia, a prominent representative of the Asteraceae family in the GCFR. Employing NGS-based HybSeq and RADSeq methodologies, flow cytometry, karyology, and ecological modeling, we scrutinize the intricacies of its polyploid evolution. Phylogenetic reconstructions using 951 low-copy nuclear genes confirm Pteronia as a well-supported, distinct clade within the tribe Astereae. The ingroup displays a structure indicative of rapid radiation likely antedating polyploid establishment, with the two main groups demarcated by their presence or absence in the fynbos biome. Genome size analysis encompasses 1293 individuals across 347 populations, elucidating significant variation ranging from 6.1 to 34.2 pg (2C-value). Pteronia demonstrates substantially large genome sizes within Astereae and phanerophytes. Polyploidy is identified in 31% of the studied species, with four discerned ploidy levels (2x, 4x, 6x, 8x). Cytotypes exhibit marked distinctions in environmental traits, influencing their distribution across biomes and augmenting their niche differentiation. These revelations challenge the presumed scarcity of polyploidy in the Cape flora, underscoring the imperative need for detailed population studies. The intricate evolutionary history of Pteronia, characterized by recent polyploidy and genome size variation, contributes substantially to the comprehension of diversification patterns within the GCFR biodiversity hotspot.


Assuntos
Asteraceae , Diploide , Genoma de Planta , Filogenia , Poliploidia , Genoma de Planta/genética , Asteraceae/genética , Tamanho do Genoma , Evolução Biológica , Biodiversidade , Evolução Molecular
2.
Ann Bot ; 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37410810

RESUMO

BACKGROUND AND AIMS: The Greater Cape Floristic Region is one of the world's biodiversity hotspots and is considered poor in polyploids. To test this assumption, ploidy variation was investigated in a widespread Cape shrub Dicerothamnus rhinocerotis (renosterbos, Asteraceae). The aim is to elucidate the cytotype distribution and population composition across the species range, and to assess differences in morphology, environmental niches, and genetics. METHODS: Ploidy level and genome size were determined via flow cytometry, cytotype assignment was confirmed by chromosome counting. RADseq analyses were used to infer genetic relationships. Cytotype climatic and environmental niches were compared using a range of environmental layers and a soil model, while morphological differences were examined using multivariate methods. KEY RESULTS: The survey of 171 populations and 2370 individuals showed that the species comprises diploid and tetraploid cytotypes, no intermediates and only 16.8 % of mixed populations. Mean 2C-values are 1.80-2.06 pg for diploids and 3.48-3.80 pg for tetraploids, with very similar monoploid genome sizes. Intra-cytotype variation showed a significant positive correlation with altitude and longitude in both cytotypes and with latitude in diploids. Although niches of both cytotypes are highly equivalent and similar, their optima and breadth are shifted due to differences mainly in isothermality and available water capacity. Morphometric analyses showed significant differences in the leaves and corolla traits, in the number of florets per capitulum, and cypsela dimensions between the two cytotypes. Genetic analyses revealed four groups, three of them including both cytotypes. CONCLUSIONS: Dicerothamnus rhinocerotis includes two distinct cytotypes that are genetically similar. While tetraploids arise several times independently within different genetic groups, morphological and ecological differences are evident between cytotypes. Our results open up new avenues for questions regarding the importance of ploidy in the megadiverse Cape flora, and exemplify the need for population-based studies focused on ploidy variation.

3.
Bratisl Lek Listy ; 124(8): 609-614, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37218494

RESUMO

AIM: Prospective evaluation of the results of endoscopic lumbar discectomy. METHODS: 95 patients were consecutively enrolled in the study between 2017 and 2021. We monitored low back pain and sciatica according to the Visual Analogue Scale (VAS), the limitations in daily activities (Oswestry Disability Index, ODI), overall satisfaction according to a 0-100 % scale, and the rate of surgical complications and reoperations. RESULTS: Postoperatively, the VAS values of low back pain and sciatica decreased significantly from 5 to 1 point and from 6 to 1 point, respectively, and the pain remained in the tolerable range (VAS 1-2) throughout the follow-up period. The ODI score improved significantly from severe disability (46 %), preoperatively, to moderate disability at discharge and one month after surgery (29 % and 22 %, respectively), down to minimal disability at 3 and 12 months after surgery (12 % and 14 %, respectively). Overall patient satisfaction improved significantly at all follow-up time points (46 %, 70 %, 77 %, 80 %, and 78 %, respectively). Reoperation rate was 6.3 %. Cerebrospinal fluid leakage was observed in one case only (1.1 %). Transient postoperative perianogenital sensory impairment occurred in two patients (2.1 %). There was no evidence of surgical site infection or haematoma. CONCLUSION: Endoscopic discectomy provides significant pain relief and improves the patient's ability to perform activities of daily living, contributing to greater satisfaction. It is a safe method with a low risk of surgical and neurological complications (Tab. 3, Fig. 3, Ref. 27).


Assuntos
Deslocamento do Disco Intervertebral , Dor Lombar , Ciática , Humanos , Ciática/cirurgia , Deslocamento do Disco Intervertebral/cirurgia , Dor Lombar/cirurgia , Atividades Cotidianas , Resultado do Tratamento , Vértebras Lombares/cirurgia , Discotomia/métodos , Endoscopia/métodos , Estudos Retrospectivos
4.
PLoS One ; 18(3): e0275551, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36920952

RESUMO

Animal genomes vary widely in size, and much of their architecture and content remains poorly understood. Even among related groups, such as orders of insects, genomes may vary in size by orders of magnitude-for reasons unknown. The largest known insect genomes were repeatedly found in Orthoptera, e.g., Podisma pedestris (1C = 16.93 pg), Stethophyma grossum (1C = 18.48 pg) and Bryodemella holdereri (1C = 18.64 pg). While all these species belong to the suborder of Caelifera, the ensiferan Deracantha onos (1C = 19.60 pg) was recently found to have the largest genome. Here, we present new genome size estimates of 50 further species of Ensifera (superfamilies Gryllidea, Tettigoniidea) and Caelifera (Acrididae, Tetrigidae) based on flow cytometric measurements. We found that Bryodemella tuberculata (Caelifera: Acrididae) has the so far largest measured genome of all insects with 1C = 21.96 pg (21.48 gBp). Species of Orthoptera with 2n = 16 and 2n = 22 chromosomes have significantly larger genomes than species with other chromosome counts. Gryllidea genomes vary between 1C = 0.95 and 2.88 pg, and Tetrigidae between 1C = 2.18 and 2.41, while the genomes of all other studied Orthoptera range in size from 1C = 1.37 to 21.96 pg. Reconstructing ancestral genome sizes based on a phylogenetic tree of mitochondrial genomic data, we found genome size values of >15.84 pg only for the nodes of Bryodemella holdereri / B. tuberculata and Chrysochraon dispar / Euthystira brachyptera. The predicted values of ancestral genome sizes are 6.19 pg for Orthoptera, 5.37 pg for Ensifera, and 7.28 pg for Caelifera. The reasons for the large genomes in Orthoptera remain largely unknown, but a duplication or polyploidization seems unlikely as chromosome numbers do not differ much. Sequence-based genomic studies may shed light on the underlying evolutionary mechanisms.


Assuntos
Gafanhotos , Ortópteros , Animais , Ortópteros/genética , Filogenia , Tamanho do Genoma , Evolução Biológica , Gafanhotos/genética , Genoma de Inseto
5.
Am J Bot ; 109(10): 1607-1621, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36193941

RESUMO

PREMISE: It is well-known that whole genome duplication (WGD) has played a significant role in the evolution of plants. The best-known phenotypic effect of WGD is the gigas effect, or the enlargement of polyploid plant traits. WGD is often linked with increased weediness, which could be a result of fitness advantages conferred by the gigas effect. As a result, the gigas effect could potentially explain polyploid persistence and abundance. We test whether a gigas effect is present in the polyploid-rich geophyte Oxalis, at both organ and cellular scales. METHODS: We measured traits in conspecific diploid and polyploid accessions of 24 species across the genus. In addition, we measured the same and additional traits in 20 populations of the weedy and highly ploidy-variable species Oxalis purpurea L., including measures of clonality and selfing as a proxy for weediness. Ploidy level was determined using flow cytometry. RESULTS: We found substantial variation and no consistent ploidy-related size difference, both between and within species, and across traits. Oxalis purpurea polyploids did, however, produce significantly more underground biomass and more bulbils than diploids, consistent with a potential role of WGD in the weediness of this species. CONCLUSIONS: Our results suggest a more nuanced role for the gigas effect, at least in Oxalis. It may be temporary, short-lived, and inconsistently expressed and retained on evolutionary time scales, but in the short term can contribute to lineage success via increased vegetative reproduction.


Assuntos
Oxalidaceae , Poliploidia , Diploide , Ploidias , Reprodução
6.
Genes (Basel) ; 12(7)2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202779

RESUMO

Polyploidy has played a crucial role in the evolution of many plant taxa, namely in higher latitudinal zones. Surprisingly, after several decades of an intensive research on polyploids, there are still common polyploid species whose evolutionary history is virtually unknown. Here, we addressed the origin of sweet vernal grass (Anthoxanthum odoratum) using flow cytometry, DNA sequencing, and in situ hybridization-based cytogenetic techniques. An allotetraploid and polytopic origin of the species has been verified. The chromosome study reveals an extensive variation between the European populations. In contrast, an autopolyploid origin of the rarer tetraploid vernal grass species, A. alpinum, has been corroborated. Diploid A. alpinum played an essential role in the polyploidization of both European tetraploids studied.


Assuntos
Evolução Biológica , Evolução Molecular , Hibridização Genética , Poaceae/genética , Sequência de Bases , Cromossomos de Plantas/genética , Diploide , Hibridização In Situ , Filogenia , Poaceae/citologia , Poliploidia , Tetraploidia
7.
Plant J ; 107(2): 511-524, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33960537

RESUMO

Although the evolutionary drivers of genome size change are known, the general patterns and mechanisms of plant genome size evolution are yet to be established. Here we aim to assess the relative importance of proliferation of repetitive DNA, chromosomal variation (including polyploidy), and the type of endoreplication for genome size evolution of the Pleurothallidinae, the most species-rich orchid lineage. Phylogenetic relationships between 341 Pleurothallidinae representatives were refined using a target enrichment hybrid capture combined with high-throughput sequencing approach. Genome size and the type of endoreplication were assessed using flow cytometry supplemented with karyological analysis and low-coverage Illumina sequencing for repeatome analysis on a subset of samples. Data were analyzed using phylogeny-based models. Genome size diversity (0.2-5.1 Gbp) was mostly independent of profound chromosome count variation (2n = 12-90) but tightly linked with the overall content of repetitive DNA elements. Species with partial endoreplication (PE) had significantly greater genome sizes, and genomic repeat content was tightly correlated with the size of the non-endoreplicated part of the genome. In PE species, repetitive DNA is preferentially accumulated in the non-endoreplicated parts of their genomes. Our results demonstrate that proliferation of repetitive DNA elements and PE together shape the patterns of genome size diversity in orchids.


Assuntos
Endorreduplicação/genética , Evolução Molecular , Tamanho do Genoma/genética , Genoma de Planta/genética , Orchidaceae/genética , Sequências Repetitivas de Ácido Nucleico/genética , Cromossomos de Plantas/genética , DNA de Cloroplastos/genética , DNA de Plantas/genética , Citometria de Fluxo , Variação Genética , Cariotipagem , Filogenia , Análise de Sequência de DNA
8.
PLoS One ; 14(7): e0218389, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31260474

RESUMO

Polyploidy is one of the major forces of plant evolution and widespread mixed-ploidy species offer an opportunity to evaluate its significance. We therefore selected the cosmopolitan species Urtica dioica (stinging nettle), examined its cytogeography and pattern of absolute genome size, and assessed correlations with bioclimatic and ecogeographic data (latitude, longitude, elevation). We evaluated variation in ploidy level using an extensive dataset of 7012 samples from 1317 populations covering most of the species' distribution area. The widespread tetraploid cytotype (87%) was strongly prevalent over diploids (13%). A subsequent analysis of absolute genome size proved a uniform Cx-value of core U. dioica (except for U. d. subsp. cypria) whereas other closely related species, namely U. bianorii, U. kioviensis and U. simensis, differed significantly. We detected a positive correlation between relative genome size and longitude and latitude in the complete dataset of European populations and a positive correlation between relative genome size and longitude in a reduced dataset of diploid accessions (the complete dataset of diploids excluding U. d. subsp. kurdistanica). In addition, our data indicate an affinity of most diploids to natural and near-natural habitats and that the tetraploid cytotype and a small part of diploids (population from the Po river basin in northern Italy) tend to inhabit synanthropic sites. To sum up, the pattern of ploidy variation revealed by our study is in many aspects unique to the stinging nettle, being most likely first of all driven by the greater ecological plasticity and invasiveness of the tetraploid cytotype.


Assuntos
Evolução Biológica , Genoma de Planta , Ploidias , Urtica dioica/genética , Adaptação Fisiológica/genética , Ásia Ocidental , Ecossistema , Europa (Continente) , Tamanho do Genoma , Geografia , Cariotipagem , Seleção Genética , Urtica dioica/classificação
9.
Mol Ecol ; 26(13): 3513-3532, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28390111

RESUMO

High tropical mountains harbour remarkable and fragmented biodiversity thought to a large degree to have been shaped by multiple dispersals of cold-adapted lineages from remote areas. Few dated phylogenetic/phylogeographic analyses are however available. Here, we address the hypotheses that the sub-Saharan African sweet vernal grasses have a dual colonization history and that lineages of independent origins have established secondary contact. We carried out rangewide sampling across the eastern African high mountains, inferred dated phylogenies from nuclear ribosomal and plastid DNA using Bayesian methods, and performed flow cytometry and AFLP (amplified fragment length polymorphism) analyses. We inferred a single Late Pliocene western Eurasian origin of the eastern African taxa, whose high-ploid populations in one mountain group formed a distinct phylogeographic group and carried plastids that diverged from those of the currently allopatric southern African lineage in the Mid- to Late Pleistocene. We show that Anthoxanthum has an intriguing history in sub-Saharan Africa, including Late Pliocene colonization from southeast and north, followed by secondary contact, hybridization, allopolyploidization and local extinction during one of the last glacial cycles. Our results add to a growing body of evidence showing that isolated tropical high mountain habitats have a dynamic recent history involving niche conservatism and recruitment from remote sources, repeated dispersals, diversification, hybridization and local extinction.


Assuntos
Evolução Biológica , Filogenia , Poaceae/classificação , África do Norte , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Teorema de Bayes , Filogeografia
10.
Ann Bot ; 120(2): 285-302, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28444200

RESUMO

Background and Aims: Knowledge of diploid phylogeny and ecogeography provide a foundation for understanding plant evolutionary history, diversification patterns and taxonomy. The genus Anthoxanthum (vernal grasses, Poaceae) represents a taxonomically intricate polyploid complex with large phenotypic variation and poorly resolved evolutionary relationships. The aims of the study were to reveal: (1) evolutionary lineages of the diploid taxa and their genetic differentiation; (2) the past distribution of the rediscovered 'Mediterranean diploid'; and (3) possible migration routes of diploids in the Mediterranean. Methods: A combined approach involving sequencing of two plastid regions ( trnL-trnF and rpl32-trnL ), nrDNA ITS, rDNA FISH analyses, climatic niche characterization and spatio-temporal modelling was used. Key Results: Among the examined diploid species, only two well-differentiated evolutionary lineages were recognized: Anthoxanthum gracile and A. alpinum . The other taxa - A. aristatum, A. ovatum, A. maderense and the 'Mediterranean diploid' - form a rather intermixed group based on the examined molecular data. In situ rDNA localization enabled identification of the ancestral Anthoxanthum karyotype, shared by A. gracile and two taxa from the crown group. For the studied taxa, ancestral location probabilities for six discrete geographical regions in the Mediterranean were proposed and likely scenarios of gradual expansion from them were suggested. Modelling past and present distributions shows that the 'Mediterranean diploid' has already been occurring in the same localities for 120 000 years. Conclusions: Highly congruent results were obtained and dated the origin and first diversification of Anthoxanthum to the Miocene. The later divergence probably took place in the Pleistocene and started polyploid evolution within the genus. The most recent diversification event is still occurring, and incomplete lineage sorting prevents full diversification of taxa at the molecular level, despite clear separation based on climatic niches. The 'Mediterranean diploid' is hypothesized to be a possible relic of the most recent common ancestor of Anthoxanthum due to their sharing of ancestral features.


Assuntos
Evolução Biológica , Diploide , Filogenia , Poaceae/classificação , DNA de Cloroplastos/genética , Região do Mediterrâneo
11.
BMC Evol Biol ; 17(1): 87, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28335715

RESUMO

BACKGROUND: Processes driving ploidal diversity at the population level are virtually unknown. Their identification should use a combination of large-scale screening of ploidy levels in the field, pairwise crossing experiments and mathematical modelling linking these two types of data. We applied this approach to determine the drivers of frequencies of coexisting cytotypes in mixed-ploidy field populations of the fully sexual plant species Pilosella echioides. We examined fecundity and ploidal diversity in seeds from all possible pairwise crosses among 2x, 3x and 4x plants. Using these data, we simulated the dynamics of theoretical panmictic populations of individuals whose progeny structure is identical to that determined by the hybridization experiment. RESULTS: The seed set differed significantly between the crossing treatments, being highest in crosses between diploids and tetraploids and lowest in triploid-triploid crosses. The number of progeny classes (with respect to embryo and endosperm ploidy) ranged from three in the 2x-2x cross to eleven in the 3x-3x cross. Our simulations demonstrate that, provided there is no difference in clonal growth and/or survival between cytotypes, it is a clear case of minority cytotype exclusion depending on the initial conditions with two stable states, neither of which corresponds to the ploidal structure in the field: (i) with prevalent diploids and lower proportions of other ploidies, and (ii) with prevalent tetraploids and 9% of hexaploids. By contrast, if clonal growth differs between cytotypes, minority cytotype exclusion occurs only if the role of sexual reproduction is high; otherwise differences in clonal growth are sufficient to maintain triploid prevalence (as observed in the field) independently of initial conditions. CONCLUSIONS: The projections of our model suggest that the ploidal structure observed in the field can only be reached via a relatively high capacity for clonal growth (and proportionally lower sexual reproduction) in all cytotypes combined with higher clonal growth in the prevailing cytotype (3x).


Assuntos
Asteraceae/genética , Poliploidia , Simulação por Computador , Cruzamentos Genéticos , Diploide , Fertilidade , Hibridização Genética , Reprodução , Sementes/genética
12.
Genome Biol Evol ; 8(6): 1996-2005, 2016 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-27324917

RESUMO

In many plant species, somatic cell differentiation is accompanied by endoreduplication, a process during which cells undergo one or more rounds of DNA replication cycles in the absence of mitosis, resulting in nuclei with multiples of 2C DNA amounts (4C, 8C, 16C, etc.). In some orchids, a disproportionate increase in nuclear DNA contents has been observed, where successive endoreduplication cycles result in DNA amounts 2C + P, 2C + 3P, 2C + 7P, etc., where P is the DNA content of the replicated part of the 2C nuclear genome. This unique phenomenon was termed "progressively partial endoreplication" (PPE). We investigated processes behind the PPE in Ludisia discolor using flow cytometry (FCM) and Illumina sequencing. In particular, we wanted to determine whether chromatin elimination or incomplete genome duplication was involved, and to identify types of DNA sequences that were affected. Cell cycle analysis of root tip cell nuclei pulse-labeled with EdU revealed two cell cycles, one ending above the population of nuclei with 2C + P content, and the other with a typical "horseshoe" pattern of S-phase nuclei ranging from 2C to 4C DNA contents. The process leading to nuclei with 2C + P amounts therefore involves incomplete genome replication. Subsequent Illumina sequencing of flow-sorted 2C and 2C + P nuclei showed that all types of repetitive DNA sequences were affected during PPE; a complete elimination of any specific type of repetitive DNA was not observed. We hypothesize that PPE is part of a highly controlled transition mechanism from proliferation phase to differentiation phase of plant tissue development.


Assuntos
Replicação do DNA/genética , Endorreduplicação/genética , Citometria de Fluxo/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Núcleo Celular/genética , Genoma de Planta , Mitose/genética , Orchidaceae/genética , Folhas de Planta/genética , Poliploidia
13.
Ann Bot ; 117(1): 107-20, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26467247

RESUMO

BACKGROUND AND AIMS: Polyploidy in plants has been studied extensively. In many groups, two or more cytotypes represent separate biological entities with distinct distributions, histories and ecology. This study examines the distribution and origins of cytotypes of Alnus glutinosa in Europe, North Africa and western Asia. METHODS: A combined approach was used involving flow cytometry and microsatellite analysis of 12 loci in 2200 plants from 209 populations combined with species distribution modelling using MIROC and CCSM climatic models, in order to analyse (1) ploidy and genetic variation, (2) the origin of tetraploid A. glutinosa, considering A. incana as a putative parent, and (3) past distributions of the species. KEY RESULTS: The occurrence of tetraploid populations of A. glutinosa in Europe is determined for the first time. The distribution of tetraploids is far from random, forming two geographically well-delimited clusters located in the Iberian Peninsula and the Dinaric Alps. Based on microsatellite analysis, both tetraploid clusters are probably of autopolyploid origin, with no indication that A. incana was involved in their evolutionary history. A projection of the MIROC distribution model into the Last Glacial Maximum (LGM) showed that (1) populations occurring in the Iberian Peninsula and North Africa were probably interconnected during the LGM and (2) populations occurring in the Dinaric Alps did not exist throughout the last glacial periods, having retreated southwards into lowland areas of the Balkan Peninsula. CONCLUSIONS: Newly discovered tetraploid populations are situated in the putative main glacial refugia, and neither of them was likely to have been involved in the colonization of central and northern Europe after glacial withdrawal. This could mean that neither the Iberian Peninsula nor the western part of the Balkan Peninsula served as effective refugial areas for northward post-glacial expansion of A. glutinosa.


Assuntos
Alnus/citologia , Alnus/genética , Ecossistema , Citometria de Fluxo/métodos , Geografia , Repetições de Microssatélites/genética , Filogenia , Alelos , Diploide , Europa (Continente) , Genes de Plantas , Variação Genética , Poliploidia , Análise de Componente Principal
14.
PLoS One ; 10(7): e0133748, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26207824

RESUMO

The genus Anthoxanthum (sweet vernal grass, Poaceae) represents a taxonomically intricate polyploid complex with large phenotypic variation and its evolutionary relationships still poorly resolved. In order to get insight into the geographic distribution of ploidy levels and assess the taxonomic value of genome size data, we determined C- and Cx-values in 628 plants representing all currently recognized European species collected from 197 populations in 29 European countries. The flow cytometric estimates were supplemented by conventional chromosome counts. In addition to diploids, we found two low (rare 3x and common 4x) and one high (~16x-18x) polyploid levels. Mean holoploid genome sizes ranged from 5.52 pg in diploid A. alpinum to 44.75 pg in highly polyploid A. amarum, while the size of monoploid genomes ranged from 2.75 pg in tetraploid A. alpinum to 9.19 pg in diploid A. gracile. In contrast to Central and Northern Europe, which harboured only limited cytological variation, a much more complex pattern of genome sizes was revealed in the Mediterranean, particularly in Corsica. Eight taxonomic groups that partly corresponded to traditionally recognized species were delimited based on genome size values and phenotypic variation. Whereas our data supported the merger of A. aristatum and A. ovatum, eastern Mediterranean populations traditionally referred to as diploid A. odoratum were shown to be cytologically distinct, and may represent a new taxon. Autopolyploid origin was suggested for 4x A. alpinum. In contrast, 4x A. odoratum seems to be an allopolyploid, based on the amounts of nuclear DNA. Intraspecific variation in genome size was observed in all recognized species, the most striking example being the A. aristatum/ovatum complex. Altogether, our study showed that genome size can be a useful taxonomic marker in Anthoxathum to not only guide taxonomic decisions but also help resolve evolutionary relationships in this challenging grass genus.


Assuntos
Genoma de Planta , Poaceae/genética , Evolução Biológica , Núcleo Celular/química , Cromossomos de Plantas/genética , DNA de Plantas/genética , Diploide , Europa (Continente) , Citometria de Fluxo , Especiação Genética , Hibridização Genética , Dispersão Vegetal , Raízes de Plantas , Poaceae/classificação , Poliploidia , Especificidade da Espécie
15.
PLoS One ; 9(9): e105997, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25211149

RESUMO

Despite their complex evolutionary histories, aquatic plants are highly underrepresented in contemporary biosystematic studies. Of them, the genus Callitriche is particularly interesting because of such evolutionary features as wide variation in chromosome numbers and pollination systems. However, taxonomic difficulties have prevented broader investigation of this genus. In this study we applied flow cytometry to Callitriche for the first time in order to gain an insight into evolutionary processes and genome size differentiation in the genus. Flow cytometry complemented by confirmation of chromosome counts was applied to an extensive dataset of 1077 Callitriche individuals from 495 localities in 11 European countries and the USA. Genome size was determined for 12 taxa. The results suggest that many important processes have interacted in the evolution of the genus, including polyploidization and hybridization. Incongruence between genome size and ploidy level, intraspecific variation in genome size, formation of autotriploid and hybridization between species with different pollination systems were also detected. Hybridization takes place particularly in the diploid-tetraploid complex C. cophocarpa-C. platycarpa, for which the triploid hybrids were frequently recorded in the area of co-occurrence of its parents. A hitherto unknown hybrid (probably C. hamulata × C. cophocarpa) with a unique chromosome number was discovered in the Czech Republic. However, hybridization occurs very rarely among most of the studied species. The main ecological preferences were also compared among the taxa collected. Although Callitriche taxa often grow in mixed populations, the ecological preferences of individual species are distinctly different in some cases. Anyway, flow cytometry is a very efficient method for taxonomic delimitation, determination and investigation of Callitriche species, and is even able to distinguish homoploid taxa and identify introduced species.


Assuntos
Evolução Molecular , Tamanho do Genoma , Genoma de Planta/genética , Plantago/genética , Citometria de Fluxo , Flores/genética , Poliploidia
16.
Ann Bot ; 113(1): 159-70, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24232383

RESUMO

BACKGROUND AND AIMS: Despite the great importance of autopolyploidy in the evolution of angiosperms, relatively little attention has been devoted to autopolyploids in natural polyploid systems. Several hypotheses have been proposed to explain why autopolyploids are so common and successful, for example increased genetic diversity and heterozygosity and the transition towards selfing. However, case studies on patterns of genetic diversity and on mating systems in autopolyploids are scarce. In this study allozymes were employed to investigate the origin, population genetic diversity and mating system in the contact zone between diploid and assumed autotetraploid cytotypes of Vicia cracca in Central Europe. METHODS: Four enzyme systems resolved in six putative loci were investigated in ten diploid, ten tetraploid and five mixed-ploidy populations. Genetic diversity and heterozygosity, partitioning of genetic diversity among populations and cytotypes, spatial genetic structure and fixed heterozygosity were analysed. These studies were supplemented by a pollination experiment and meiotic chromosome observation. KEY RESULTS AND CONCLUSIONS: Weak evidence of fixed heterozygosity, a low proportion of unique alleles and genetic variation between cytotypes similar to the variation among populations within cytotypes supported the autopolyploid origin of tetraploids, although no multivalent formation was observed. Tetraploids possessed more alleles than diploids and showed higher observed zygotic heterozygosity than diploids, but the observed gametic heterozygosity was similar to the value observed in diploids and smaller than expected under panmixis. Values of the inbreeding coefficient and differentiation among populations (ρST) suggested that the breeding system in both cytotypes of V. cracca is mixed mating with prevailing outcrossing. The reduction in seed production of tetraploids after selfing was less than that in diploids. An absence of correlation between genetic and geographic distances and high differentiation among neighbouring tetraploid populations supports the secondary contact hypothesis with tetraploids of several independent origins in Central Europe. Nevertheless, the possibility of a recent in situ origin of tetraploids through a triploid bridge in some regions is also discussed.


Assuntos
Diploide , Variação Genética , Genética Populacional , Polinização/genética , Sementes/genética , Autofertilização/genética , Tetraploidia , Vicia/genética , Alelos , República Tcheca , Europa (Continente) , Heterozigoto , Isoenzimas/genética , Eslováquia
17.
New Phytol ; 199(4): 1022-1033, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23731358

RESUMO

Polyploidy is widely recognized as a major mechanism of sympatric speciation in plants, yet little is known about its effects on interactions with other organisms. Mycorrhizal fungi are among the most common plant symbionts and play an important role in plant nutrient supply. It remains to be understood whether mycorrhizal associations of ploidy-variable plants can be ploidy-specific. We examined mycorrhizal associations in three cytotypes (2x, 3x, 4x) of the Gymnadenia conopsea group (Orchidaceae), involving G. conopsea s.s. and G. densiflora, at different spatial scales and during different ontogenetic stages. We analysed: adults from mixed- and single-ploidy populations at a regional scale; closely spaced adults within a mixed-ploidy site; and mycorrhizal seedlings. All Gymnadenia cytotypes associated mainly with saprotrophic Tulasnellaceae (Basidiomycota). Nonetheless, both adults and seedlings of diploids and their autotetraploid derivatives significantly differed in the identity of their mycorrhizal symbionts. Interploidy segregation of mycorrhizal symbionts was most pronounced within a site with closely spaced adults. This study provides the first evidence that polyploidization of a plant species can be associated with a shift in mycorrhizal symbionts. This divergence may contribute to niche partitioning and facilitate establishment and co-existence of different cytotypes.


Assuntos
Biodiversidade , Micorrizas/fisiologia , Orchidaceae/microbiologia , Ploidias , Simbiose/fisiologia , República Tcheca , Orchidaceae/crescimento & desenvolvimento , Plântula/microbiologia
18.
Ann Bot ; 111(4): 641-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23425783

RESUMO

BACKGROUND AND AIMS: Genome duplication is widely acknowledged as a major force in the evolution of angiosperms, although the incidence of polyploidy in different floras may differ dramatically. The Greater Cape Floristic Region of southern Africa is one of the world's biodiversity hotspots and is considered depauperate in polyploids. To test this assumption, ploidy variation was assessed in a widespread member of the largest geophytic genus in the Cape flora: Oxalis obtusa. METHODS: DNA flow cytometry complemented by confirmatory chromosome counts was used to determine ploidy levels in 355 populations of O. obtusa (1014 individuals) across its entire distribution range. Ecological differentiation among cytotypes was tested by comparing sets of vegetation and climatic variables extracted for each locality. KEY RESULTS: Three majority (2x, 4x, 6x) and three minority (3x, 5x, 8x) cytotypes were detected in situ, in addition to a heptaploid individual originating from a botanical garden. While single-cytotype populations predominate, 12 mixed-ploidy populations were also found. The overall pattern of ploidy level distribution is quite complex, but some ecological segregation was observed. Hexaploids are the most common cytotype and prevail in the Fynbos biome. In contrast, tetraploids dominate in the Succulent Karoo biome. Precipitation parameters were identified as the most important climatic variables associated with cytotype distribution. CONCLUSIONS: Although it would be premature to make generalizations regarding the role of genome duplication in the genesis of hyperdiversity of the Cape flora, the substantial and unexpected ploidy diversity in Oxalis obtusa is unparalleled in comparison with any other cytologically known native Cape plant species. The results suggest that ploidy variation in the Greater Cape Floristic Region may be much greater than currently assumed, which, given the documented role of polyploidy in speciation, has direct implications for radiation hypotheses in this biodiversity hotspot.


Assuntos
Variação Genética , Magnoliopsida/citologia , Magnoliopsida/genética , Ploidias , África Austral , Biodiversidade , Cromossomos de Plantas , Citometria de Fluxo/métodos , Genética Populacional
19.
Ann Bot ; 110(5): 977-86, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23002267

RESUMO

BACKGROUND AND AIMS: Patterns of ploidy variation among and within populations can provide valuable insights into the evolutionary mechanisms shaping the dynamics of plant systems showing ploidy diversity. Whereas data on majority ploidies are, by definition, often sufficiently extensive, much less is known about the incidence and evolutionary role of minority cytotypes. METHODS: Ploidy and proportions of endoreplicated genome were determined using DAPI (4',6-diamidino-2-phenylindole) flow cytometry in 6150 Gymnadenia plants (fragrant orchids) collected from 141 populations in 17 European countries. All widely recognized European species, and several taxa of less certain taxonomic status were sampled within Gymnadenia conopsea sensu lato. KEY RESULTS: Most Gymnadenia populations were taxonomically and/or ploidy heterogeneous. Two majority (2x and 4x) and three minority (3x, 5x and 6x) cytotypes were identified. Evolution largely proceeded at the diploid level, whereas tetraploids were much more geographically and taxonomically restricted. Although minority ploidies constituted <2 % of the individuals sampled, they were found in 35 % of populations across the entire area investigated. The amount of nuclear DNA, together with the level of progressively partial endoreplication, separated all Gymnadenia species currently widely recognized in Europe. CONCLUSIONS: Despite their low frequency, minority cytotypes substantially increase intraspecific and intrapopulation ploidy diversity estimates for fragrant orchids. The cytogenetic structure of Gymnadenia populations is remarkably dynamic and shaped by multiple evolutionary mechanisms, including both the ongoing production of unreduced gametes and heteroploid hybridization. Overall, it is likely that the level of ploidy heterogeneity experienced by most plant species/populations is currently underestimated; intensive sampling is necessary to obtain a holistic picture.


Assuntos
Evolução Biológica , Variação Genética , Genoma de Planta/genética , Orchidaceae/genética , Poliploidia , Cromossomos de Plantas/genética , Citogenética , Endorreduplicação , Europa (Continente) , Citometria de Fluxo , Geografia , Hibridização Genética , Orchidaceae/classificação , Orchidaceae/citologia
20.
PLoS One ; 7(7): e39988, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22792207

RESUMO

Polyploidization is one of the leading forces in the evolution of land plants, providing opportunities for instant speciation and rapid gain of evolutionary novelties. Highly selective conditions of serpentine environments act as an important evolutionary trigger that can be involved in various speciation processes. Whereas the significance of both edaphic speciation on serpentine and polyploidy is widely acknowledged in plant evolution, the links between polyploid evolution and serpentine differentiation have not yet been examined. To fill this gap, we investigated the evolutionary history of the perennial herb Knautia arvensis (Dipsacaceae), a diploid-tetraploid complex that exhibits an intriguing pattern of eco-geographic differentiation. Using plastid DNA sequencing and AFLP genotyping of 336 previously cytotyped individuals from 40 populations from central Europe, we unravelled the patterns of genetic variation among the cytotypes and the edaphic types. Diploids showed the highest levels of genetic differentiation, likely as a result of long term persistence of several lineages in ecologically distinct refugia and/or independent immigration. Recurrent polyploidization, recorded in one serpentine island, seems to have opened new possibilities for the local serpentine genotype. Unlike diploids, the serpentine tetraploids were able to escape from the serpentine refugium and spread further; this was also attributable to hybridization with the neighbouring non-serpentine tetraploid lineages. The spatiotemporal history of K. arvensis allows tracing the interplay of polyploid evolution and ecological divergence on serpentine, resulting in a complex evolutionary pattern. Isolated serpentine outcrops can act as evolutionary capacitors, preserving distinct karyological and genetic diversity. The serpentine lineages, however, may not represent evolutionary 'dead-ends' but rather dynamic systems with a potential to further influence the surrounding populations, e.g., via independent polyplodization and hybridization. The complex eco-geographical pattern together with the incidence of both primary and secondary diploid-tetraploid contact zones makes K. arvensis a unique system for addressing general questions of polyploid research.


Assuntos
Evolução Biológica , Dipsacaceae/genética , Dipsacaceae/metabolismo , Poliploidia , Solo/química , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Asbestos Serpentinas , Ecossistema , Europa (Continente) , Genoma de Planta , Haplótipos , Fenótipo , Filogenia , Plastídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA