Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ann Clin Transl Neurol ; 3(10): 752-768, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27752511

RESUMO

OBJECTIVE: We have previously described the generation of coxsackievirus and adenovirus receptor (α CAR)-targeted vector, and shown that intramuscular delivery in mouse leg muscles resulted in specific retrograde transduction of lumbar-motor neurons (MNs). Here, we utilized the α CAR-targeted vector to investigate the in vivo neuroprotective effects of lentivirally expressed IGF-1 for inducing neuronal survival and ameliorating the neuropathology and behavioral phenotypes of the SOD1G93A mouse model of ALS. METHODS: We produced cell factories of IGF-1 expressing lentiviral vectors (LVs) bearing α CAR or Vesicular Stomatitis Virus glycoprotein (VSV-G) on their surface so as to compare neuroprotection from MN transduced versus muscle transduced cells. We performed intramuscular delivery of either α CAR IGF-1 or VSVG IGF-1 LVs into key muscles of SOD1G93A mice prior to disease onset at day 28. Motor performance, coordination and gait analysis were assessed weekly. RESULTS: We observed substantial therapeutic efficacy only with the α CAR IGF-1 LV pretreatment with up to 50% extension of survival compared to controls. α CAR IGF-1 LV-treated animals retained muscle tone and had better motor performance during their prolonged survival. Histological analysis of spinal cord samples at end-stage further confirmed that α CAR IGF-1 LV treatment delays disease onset by increasing MN survival compared with age-matched controls. Intrastriatal injection of α CAR eGFP LV in rats leads to transduction of neurons and glia locally and neurons in olfactory bulb distally. INTERPRETATION: Our data are indicative of the efficacy of the α CAR IGF-1 LV in this model and support its candidacy for early noninvasive neuroprotective therapy in ALS.

2.
J Biol Chem ; 289(23): 16148-63, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24753246

RESUMO

Rabies pseudotyped lentiviral vectors have great potential in gene therapy, not least because of their ability to transduce neurons following their distal axonal application. However, very little is known about the molecular processes that underlie their retrograde transport and cell transduction. Using multiple labeling techniques and confocal microscopy, we demonstrated that pseudotyping with rabies virus envelope glycoprotein (RV-G) enabled the axonal retrograde transport of two distinct subtypes of lentiviral vector in motor neuron cultures. Analysis of this process revealed that these vectors trafficked through Rab5-positive endosomes and accumulated within a non-acidic Rab7 compartment. RV-G pseudotyped vectors were co-transported with both the tetanus neurotoxin-binding fragment and the membrane proteins thought to mediate rabies virus endocytosis (neural cell adhesion molecule, nicotinic acetylcholine receptor, and p75 neurotrophin receptor), thus demonstrating that pseudotyping with RV-G targets lentiviral vectors for transport along the same pathway exploited by several toxins and viruses. Using motor neurons cultured in compartmentalized chambers, we demonstrated that axonal retrograde transport of these vectors was rapid and efficient; however, it was not able to transduce the targeted neurons efficiently, suggesting that impairment in processes occurring after arrival of the viral vector in the soma is responsible for the low transduction efficiency seen in vivo, which suggests a novel area for improvement of gene therapy vectors.


Assuntos
Transporte Axonal , Vetores Genéticos , Lentivirus/genética , Neurônios Motores/metabolismo , Vírus da Raiva/metabolismo , Proteínas do Envelope Viral/metabolismo , Animais , Endocitose , Células HEK293 , Humanos , Neurônios Motores/virologia , Ratos , Proteínas do Envelope Viral/genética
3.
J Virol ; 88(5): 2877-90, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24371049

RESUMO

UNLABELLED: To investigate the potential benefits which may arise from pseudotyping the HIV-1 lentiviral vector with its homologous gp41 envelope glycoprotein (GP) cytoplasmic tail (CT), we created chimeric RVG/HIV-1gp41 GPs composed of the extracellular and transmembrane sequences of RVG and either the full-length gp41 CT or C terminus gp41 truncations sequentially removing existing conserved motifs. Lentiviruses (LVs) pseudotyped with the chimeric GPs were evaluated in terms of particle release (physical titer), biological titers, infectivity, and in vivo central nervous system (CNS) transduction. We report here that LVs carrying shorter CTs expressed higher levels of envelope GP and showed a higher average infectivity than those bearing full-length GPs. Interestingly, complete removal of GP CT led to vectors with the highest transduction efficiency. Removal of all C-terminal gp41 CT conserved motifs, leaving just 17 amino acids (aa), appeared to preserve infectivity and resulted in a significantly increased physical titer. Furthermore, incorporation of these 17 aa in the RVG CT notably enhanced the physical titer. In vivo stereotaxic delivery of LV vectors exhibiting the best in vitro titers into rodent striatum facilitated efficient transduction of the CNS at the site of injection. A particular observation was the improved retrograde transduction of neurons in connected distal sites that resulted from the chimeric envelope R5 which included the "Kennedy" sequence (Ken) and lentivirus lytic peptide 2 (LLP2) conserved motifs in the CT, and although it did not exhibit a comparable high titer upon pseudotyping, it led to a significant increase in distal retrograde transduction of neurons. IMPORTANCE: In this study, we have produced novel chimeric envelopes bearing the extracellular domain of rabies fused to the cytoplasmic tail (CT) of gp41 and pseudotyped lentiviral vectors with them. Here we report novel effects on the transduction efficiency and physical titer of these vectors, depending on CT length and context. We also managed to achieve increased neuronal transduction in vivo in the rodent CNS, thus demonstrating that the efficiency of these vectors can be enhanced following merely CT manipulation. We believe that this paper is a novel contribution to the field and opens the way for further attempts to surface engineer lentiviral vectors and make them more amenable for applications in human disease.


Assuntos
Sistema Nervoso Central/metabolismo , Vetores Genéticos/genética , Proteína gp41 do Envelope de HIV/genética , HIV-1/genética , Proteínas Recombinantes de Fusão/genética , Transdução Genética , Proteínas do Envelope Viral/genética , Encéfalo/metabolismo , Linhagem Celular , Neurônios Dopaminérgicos/metabolismo , Expressão Gênica , Vetores Genéticos/administração & dosagem , Células HEK293 , Proteína gp41 do Envelope de HIV/metabolismo , Humanos , Lentivirus/genética , Plasmídeos/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas do Envelope Viral/metabolismo , Carga Viral
4.
Hum Gene Ther ; 25(1): 50-62, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24125177

RESUMO

The ability to deliver a large transgene efficiently to photoreceptors using viral vectors remains problematic and yet is critical for the future therapy of inherited retinal diseases such as Stargardt's and Usher's 1B. Herein, we examine the ocular tropism of a HIV-1-based lentivirus vector pseudotyped with Venezuelan equine encephalitis virus-derived glycoprotein (VEEV-G) after intraocular delivery to the posterior and anterior chambers of C57BL/6 wild-type mice. Reporter gene (EGFP) expression was evaluated using in vivo fluorescence imaging followed by postmortem immunohistochemistry and retinal function assessed by electroretinography. Intracameral administration of VEEV-G and vesicular stomatitis virus glycoprotein (VSV-G)-pseudotyped vectors resulted in robust transgene expression in the corneal endothelium and trabecular meshwork. After subretinal administration, onset of transgene expression was observed in the retinal pigment epithelium (RPE) 1 day postinjection with both VEEV-G and control VSV-G pseudotypes, but no significant photoreceptor transduction was apparent. Substantial degeneration of the outer nuclear layer was observed with VEEV-G-pseudotyped vector, which corresponded to ablation of retinal function. Subretinal administration of VSV-G was observed to result in significant suppression of electrophysiological function compared with buffer-injected and uninjected control eyes. Suppression of the c-wave amplitude, in addition to reduced RPE65 expression, indicated potential RPE dysfunction. Ex vivo tropism of VSV-G was assessed using organotypic culture of explanted retina harvested from wild-type mice and human patients undergoing retinal detachment surgery to examine the prevention of transduction by physical barriers and species differences in tropism.


Assuntos
Vírus da Encefalite Equina Venezuelana/genética , Vetores Genéticos/genética , Glicoproteínas/genética , Lentivirus/genética , Transdução Genética , Vírus da Estomatite Vesicular Indiana/genética , Proteínas do Envelope Viral/genética , Animais , Linhagem Celular , Endotélio Corneano/metabolismo , Expressão Gênica , Genes Reporter , Vetores Genéticos/administração & dosagem , Vetores Genéticos/toxicidade , Humanos , Camundongos , Células Fotorreceptoras/metabolismo , Retina/metabolismo , Retina/fisiopatologia , Retina/transplante , Malha Trabecular/metabolismo , Transgenes
5.
Mol Ther ; 21(10): 1862-75, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23799534

RESUMO

Huntington's disease (HD) is a devastating neurodegenerative disorder caused by abnormal polyglutamine expansion in the huntingtin protein (Exp-Htt). Currently, there are no effective treatments for HD. We used bidirectional lentiviral transfer vectors to generate in vitro and in vivo models of HD and to test the therapeutic potential of vascular endothelial growth factor 165 (VEGF165). Lentiviral-mediated expression of Exp-Htt caused cell death and aggregate formation in human neuroblastoma SH-SY5Y and rat primary striatal cultures. Lentiviral-mediated VEGF165 expression was found to be neuroprotective in both of these models. Unilateral stereotaxic vector delivery of Exp-Htt vector in adult rat striatum led to progressive inclusion formation and striatal neuron loss at 10 weeks post-transduction. Coinjection of a lower dose VEGF165 significantly attenuated DARPP-32(+) neuronal loss, enhanced NeuN staining and reduced Exp-Htt aggregation. A tenfold higher dose VEGF165 led to overt neuronal toxicity marked by tissue damage, neovascularization, extensive astrogliosis, vascular leakage, chronic inflammation and distal neuronal loss. No overt behavioral phenotype was observed in these animals. Expression of VEGF165 at this higher dose in the brain of wild-type rats led to early mortality with global neuronal loss. This report raises important safety concerns about unregulated VEGF165 CNS applications.


Assuntos
Corpo Estriado/patologia , Terapia Genética , Doença de Huntington/patologia , Degeneração Neural/patologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Morte Celular , Linhagem Celular Tumoral , Células Cultivadas , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Vetores Genéticos , Células HEK293 , Humanos , Proteína Huntingtina , Doença de Huntington/genética , Lentivirus/genética , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores , Ratos , Ratos Sprague-Dawley , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA