Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
bioRxiv ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38405882

RESUMO

Immune system control is a major hurdle that cancer evolution must circumvent. The relative timing and evolutionary dynamics of subclones that have escaped immune control remain incompletely characterized, and how immune-mediated selection shapes the epigenome has received little attention. Here, we infer the genome- and epigenome-driven evolutionary dynamics of tumour-immune coevolution within primary colorectal cancers (CRCs). We utilise our existing CRC multi-region multi-omic dataset that we supplement with high-resolution spatially-resolved neoantigen sequencing data and highly multiplexed imaging of the tumour microenvironment (TME). Analysis of somatic chromatin accessibility alterations (SCAAs) reveals frequent somatic loss of accessibility at antigen presenting genes, and that SCAAs contribute to silencing of neoantigens. We observe that strong immune escape and exclusion occur at the outset of CRC formation, and that within tumours, including at the microscopic level of individual tumour glands, additional immune escape alterations have negligible consequences for the immunophenotype of cancer cells. Further minor immuno-editing occurs during local invasion and is associated with TME reorganisation, but that evolutionary bottleneck is relatively weak. Collectively, we show that immune evasion in CRC follows a "Big Bang" evolutionary pattern, whereby genetic, epigenetic and TME-driven immune evasion acquired by the time of transformation defines subsequent cancer-immune evolution.

2.
Nat Commun ; 11(1): 1923, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32317663

RESUMO

Drug resistance mediated by clonal evolution is arguably the biggest problem in cancer therapy today. However, evolving resistance to one drug may come at a cost of decreased fecundity or increased sensitivity to another drug. These evolutionary trade-offs can be exploited using 'evolutionary steering' to control the tumour population and delay resistance. However, recapitulating cancer evolutionary dynamics experimentally remains challenging. Here, we present an approach for evolutionary steering based on a combination of single-cell barcoding, large populations of 108-109 cells grown without re-plating, longitudinal non-destructive monitoring of cancer clones, and mathematical modelling of tumour evolution. We demonstrate evolutionary steering in a lung cancer model, showing that it shifts the clonal composition of the tumour in our favour, leading to collateral sensitivity and proliferative costs. Genomic profiling revealed some of the mechanisms that drive evolved sensitivity. This approach allows modelling evolutionary steering strategies that can potentially control treatment resistance.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Evolução Molecular , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Evolução Clonal , Biologia Computacional , Simulação por Computador , Gefitinibe/farmacologia , Genótipo , Humanos , Neoplasias Pulmonares/patologia , Modelos Teóricos , Medicina Molecular , Piridonas/farmacologia , Pirimidinonas/farmacologia , Processos Estocásticos
3.
EBioMedicine ; 48: 224-235, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31648981

RESUMO

BACKGROUND: Despite treatment advances, there remains a significant risk of recurrence in ovarian cancer, at which stage it is usually incurable. Consequently, there is a clear need for improved patient stratification. However, at present clinical prognosticators remain largely unchanged due to the lack of reproducible methods to identify high-risk patients. METHODS: In high-grade serous ovarian cancer patients with advanced disease, we spatially define a tumour ecological balance of stromal resource and immune hazard using high-throughput image and spatial analysis of routine histology slides. On this basis an EcoScore is developed to classify tumours by a shift in this balance towards cancer-favouring or inhibiting conditions. FINDINGS: The EcoScore provides prognostic value stronger than, and independent of, known risk factors. Crucially, the clinical relevance of mutational burden and genomic instability differ under different stromal resource conditions, suggesting that the selective advantage of these cancer hallmarks is dependent on the context of stromal spatial structure. Under a high resource condition defined by a high level of geographical intermixing of cancer and stromal cells, selection appears to be driven by point mutations; whereas, in low resource tumours featured with high hypoxia and low cancer-immune co-localization, selection is fuelled by aneuploidy. INTERPRETATION: Our study offers empirical evidence that cancer fitness depends on tumour spatial constraints, and presents a biological basis for developing better assessments of tumour adaptive strategies in overcoming ecological constraints including immune surveillance and hypoxia.


Assuntos
Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/etiologia , Diagnóstico por Imagem/métodos , Suscetibilidade a Doenças , Feminino , Humanos , Estimativa de Kaplan-Meier , Mutação , Estadiamento de Neoplasias , Neoplasias Ovarianas/mortalidade , Prognóstico , Modelos de Riscos Proporcionais
4.
Clin Cancer Res ; 24(19): 4763-4770, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29891724

RESUMO

Purpose: The most significant prognostic factor in early breast cancer is lymph node involvement. This stage between localized and systemic disease is key to understanding breast cancer progression; however, our knowledge of the evolution of lymph node malignant invasion remains limited, as most currently available data are derived from primary tumors.Experimental Design: In 11 patients with treatment-naïve node-positive early breast cancer without clinical evidence of distant metastasis, we investigated lymph node evolution using spatial multiregion sequencing (n = 78 samples) of primary and lymph node deposits and genomic profiling of matched longitudinal circulating tumor DNA (ctDNA).Results: Linear evolution from primary to lymph node was rare (1/11), whereas the majority of cases displayed either early divergence between primary and nodes (4/11) or no detectable divergence (6/11), where both primary and nodal cells belonged to a single recent expansion of a metastatic clone. Divergence of metastatic subclones was driven in part by APOBEC. Longitudinal ctDNA samples from 2 of 7 subjects with evaluable plasma taken perioperatively reflected the two major evolutionary patterns and demonstrate that private mutations can be detected even from early metastatic nodal deposits. Moreover, node removal resulted in disappearance of private lymph node mutations in ctDNA.Conclusions: This study sheds new light on a crucial evolutionary step in the natural history of breast cancer, demonstrating early establishment of axillary lymph node metastasis in a substantial proportion of patients. Clin Cancer Res; 24(19); 4763-70. ©2018 AACR.


Assuntos
Neoplasias da Mama/genética , DNA Tumoral Circulante/sangue , Linfonodos/metabolismo , Metástase Linfática/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Axila/patologia , Neoplasias da Mama/sangue , Neoplasias da Mama/patologia , Evolução Clonal/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Linfonodos/patologia , Metástase Linfática/patologia , Pessoa de Meia-Idade , Proteínas de Neoplasias/sangue , Estadiamento de Neoplasias
5.
PLoS One ; 12(1): e0169875, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28076381

RESUMO

Stain colour estimation is a prominent factor of the analysis pipeline in most of histology image processing algorithms. Providing a reliable and efficient stain colour deconvolution approach is fundamental for robust algorithm. In this paper, we propose a novel method for stain colour deconvolution of histology images. This approach statistically analyses the multi-resolutional representation of the image to separate the independent observations out of the correlated ones. We then estimate the stain mixing matrix using filtered uncorrelated data. We conducted an extensive set of experiments to compare the proposed method to the recent state of the art methods and demonstrate the robustness of this approach using three different datasets of scanned slides, prepared in different labs using different scanners.


Assuntos
Algoritmos , Cor , Corantes/farmacocinética , Técnicas Histológicas/métodos , Processamento de Imagem Assistida por Computador/métodos , Modelos Estatísticos , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias do Colo/diagnóstico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Amarelo de Eosina-(YS)/farmacocinética , Feminino , Hematoxilina/farmacocinética , Técnicas Histológicas/estatística & dados numéricos , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Coloração e Rotulagem/métodos , Coloração e Rotulagem/estatística & dados numéricos
6.
Cytometry A ; 91(6): 585-594, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28009468

RESUMO

Automation of downstream analysis may offer many potential benefits to routine histopathology. One area of interest for automation is in the scoring of multiple immunohistochemical markers to predict the patient's response to targeted therapies. Automated serial slide analysis of this kind requires robust registration to identify common tissue regions across sections. We present an automated method for co-localized scoring of Estrogen Receptor and Progesterone Receptor (ER/PR) in breast cancer core biopsies using whole slide images. Regions of tumor in a series of fifty consecutive breast core biopsies were identified by annotation on H&E whole slide images. Sequentially cut immunohistochemical stained sections were scored manually, before being digitally scanned and then exported into JPEG 2000 format. A two-stage registration process was performed to identify the annotated regions of interest in the immunohistochemistry sections, which were then scored using the Allred system. Overall correlation between manual and automated scoring for ER and PR was 0.944 and 0.883, respectively, with 90% of ER and 80% of PR scores within in one point or less of agreement. This proof of principle study indicates slide registration can be used as a basis for automation of the downstream analysis for clinically relevant biomarkers in the majority of cases. The approach is likely to be improved by implantation of safeguarding analysis steps post registration. © 2016 International Society for Advancement of Cytometry.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/diagnóstico , Interpretação de Imagem Assistida por Computador/métodos , Receptores de Estrogênio/genética , Receptores de Progesterona/genética , Projetos de Pesquisa/estatística & dados numéricos , Automação Laboratorial , Biópsia com Agulha de Grande Calibre , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Amarelo de Eosina-(YS) , Feminino , Expressão Gênica , Hematoxilina , Humanos , Imuno-Histoquímica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA