Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37762013

RESUMO

Plant cell cultures have emerged as a promising tool for producing active molecules due to their numerous advantages over traditional agricultural methods. Flavonols, and anthocyanin pigments in particular, together with other phenolic compounds such as chlorogenic acid, are known for their beneficial health properties, mainly due to their antioxidant, antimicrobial, and anti-inflammatory activities. The synthesis of these molecules is finely regulated in plant cells and controlled at the transcriptional level by specific MYB and bHLH transcription factors that coordinate the transcription of structural biosynthetic genes. The co-expression of peach PpMYB10.1 and PpbHLH3 in tobacco was used to develop tobacco cell lines showing high expression of both the peach transgenes and the native flavonol structural genes. These cell lines were further selected for fast growth. High production levels of chlorogenic acid, anthocyanins (mainly cyanidin 3-rutinoside), and other phenolics were also achieved in pre-industrial scale-up trials. A single-column-based purification protocol was developed to produce a lyophile called ANT-CA, which was stable over time, showed beneficial effects on cell viability, and had antioxidant, anti-inflammatory, antibacterial, and wound-healing activities. This lyophile could be a valuable ingredient for food or cosmetic applications.


Assuntos
Antocianinas , Nicotiana , Nicotiana/genética , Antioxidantes/farmacologia , Ácido Clorogênico/farmacologia , Células Vegetais , Flavonóis
2.
Microorganisms ; 11(2)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36838445

RESUMO

Black rot caused by the Gram-negative bacterial pathogen Xanthomonas campestris pv. campestris (Xcc) is considered one of the most destructive diseases affecting crucifers. Xcc is a seedborne pathogen able to infect the host at any growth stage. The management of the pathogen mainly relies on the use of copper-based products with possible negative effects on human health and the environment. Searching for protection alternatives is crucial for achieving a sustainable management of Xcc. Trichoderma spp. has been largely used as a biocontrol agent against several phytopathogens. Among Trichoderma species, Trichoderma longibrachiatum produces the peptaibol trichogin GA IV, a secondary metabolite with antimicrobial activity against Gram-positive bacteria, as well as filamentous and yeast-like fungi. In this work, we tested, at micromolar concentrations, 25 synthetic analogs of the peptaibol trichogin GA IV for their bacteriostatic and bactericidal activity toward the bacterium Xcc. One of the most effective peptides (4r) was also tested against the Gram-negative bacteria Xanthomonas arboricola, Pseudomonas corrugata, Pseudomonas savastanoi pv. savastanoi, Agrobacterium tumefaciens, Ralstonia solanacearum, and Erwinia carotovora subsp. carotovora, as well as the Gram-positive bacterium Bacillus subtilis. The peptide 4r reduced black rot symptoms on cauliflower plants when administered both before and 24 h after inoculation with Xcc. The cytotoxic activity of the peptide 4r was also evaluated towards suspensions of tobacco cells by Evans Blue assay.

3.
Front Plant Sci ; 10: 1143, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681342

RESUMO

In plants, anthocyanin production is controlled by MYB and bHLH transcription factors. In peach, among the members of these families, MYB10.1 and bHLH3 have been shown to be the most important genes for production of these pigments during fruit ripening. Anthocyanins are valuable molecules, and the overexpression of regulatory genes in annual fast-growing plants has been explored for their biotechnological production. The overexpression of peach MYB10.1 in tobacco plants induced anthocyanin pigmentation, which was particularly strong in the reproductive parts. Pigment production was the result of an up-regulation of the expression level of key genes of the flavonoid biosynthetic pathway, such as NtCHS, NtCHI, NtF3H, NtDFR, NtANS, and NtUFGT, as well as of the proanthocyanidin biosynthetic pathway such as NtLAR. Nevertheless, phenotypic alterations in transgenic tobacco lines were not only limited to anthocyanin production. Lines showing a strong phenotype (type I) exhibited irregular leaf shape and size and reduced plant height. Moreover, flowers had reduced length of anther's filament, nondehiscent anthers, reduced pistil length, aborted nectary glands, and impaired capsule development, but the reproductive parts including androecium, gynoecium, and petals were more pigmented that in wild type. Surprisingly, overexpression of peach MYB10.1 led to suppression of NtMYB305, which is required for floral development and, of one of its target genes, NECTARIN1 (NtNCE1), involved in the nectary gland formation. MYB10.1 overexpression up-regulated JA biosynthetic (NtAOS) and signaling (NtJAZd) genes, as well as 1-aminocyclopropane-1-carboxylate oxidase (NtACO) in flowers. The alteration of these hormonal pathways might be among the causes of the observed floral abnormalities with defects in both male and female gametophyte development. In particular, approximately only 30% of pollen grains of type I lines were viable, while during megaspore formation, there was a block during FG1 (St3-II). This block seemed to be associated to an excessive accumulation of callose. It can be concluded that the overexpression of peach MYB10.1 in tobacco not only regulates flavonoid biosynthesis (anthocyanin and proanthocyanidin) in the reproductive parts but also plays a role in other processes such as vegetative and reproductive development.

4.
Front Plant Sci ; 8: 1711, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29075273

RESUMO

In vascular plants the cell-to-cell interactions coordinating morphogenetic and physiological processes are mediated, among others, by the action of hormones, among which also short mobile peptides were recognized to have roles as signals. Such peptide hormones (PHs) are involved in defense responses, shoot and root growth, meristem homeostasis, organ abscission, nutrient signaling, hormone crosstalk and other developmental processes and act as both short and long distant ligands. In this work, the function of CTG134, a peach gene encoding a ROOT GROWTH FACTOR/GOLVEN-like PH expressed in mesocarp at the onset of ripening, was investigated for its role in mediating an auxin-ethylene crosstalk. In peach fruit, where an auxin-ethylene crosstalk mechanism is necessary to support climacteric ethylene synthesis, CTG134 expression peaked before that of ACS1 and was induced by auxin and 1-methylcyclopropene (1-MCP) treatments, whereas it was minimally affected by ethylene. In addition, the promoter of CTG134 fused with the GUS reporter highlighted activity in plant parts in which the auxin-ethylene interplay is known to occur. Arabidopsis and tobacco plants overexpressing CTG134 showed abnormal root hair growth, similar to wild-type plants treated with a synthetic form of the sulfated peptide. Moreover, in tobacco, lateral root emergence and capsule size were also affected. In Arabidopsis overexpressing lines, molecular surveys demonstrated an impaired hormonal crosstalk, resulting in a re-modulated expression of a set of genes involved in both ethylene and auxin synthesis, transport and perception. These data support the role of pCTG134 as a mediator in an auxin-ethylene regulatory circuit and open the possibility to exploit this class of ligands for the rational design of new and environmental friendly agrochemicals able to cope with a rapidly changing environment.

5.
Plant Signal Behav ; 12(1): e1268312, 2017 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-27935411

RESUMO

Apple is a fleshy fruit distinguished by a climacteric type of ripening, since most of the relevant physiological changes are triggered and governed by the action of ethylene. After its production, this hormone is perceived by a series of receptors to regulate, through a signaling cascade, downstream ethylene related genes. The possibility to control the effect of ethylene opened new horizons to the improvement of the postharvest fruit quality. To this end, 1-methylcyclopropene (1-MCP), an ethylene antagonist, is routinely used to modulate the ripening progression increasing storage life. In a recent work published in The Plant Journal, the whole transcriptome variation throughout fruit development and ripening, with the adjunct comparison between normal and impaired postharvest ripening, has been illustrated. In particular, besides the expected downregulation of ethylene-regulated genes, we shed light on a regulatory circuit leading to de-repressing the expression of a specific set of genes following 1-MCP treatment, such as AUX/IAA, NAC and MADS. These findings suggested the existence of a possible ethylene/auxin cross-talk in apple, regulated by a transcriptional circuit stimulated by the interference at the ethylene receptor level.


Assuntos
Etilenos/metabolismo , Frutas/metabolismo , Frutas/fisiologia , Ácidos Indolacéticos/metabolismo , Malus/metabolismo , Malus/fisiologia , Ciclopropanos/farmacologia , Frutas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Malus/efeitos dos fármacos , Fatores de Transcrição/metabolismo
6.
Plant J ; 88(6): 963-975, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27531564

RESUMO

Apple (Malus x domestica Borkh.) is a model species for studying the metabolic changes that occur at the onset of ripening in fruit crops, and the physiological mechanisms that are governed by the hormone ethylene. In this study, to dissect the climacteric interplay in apple, a multidisciplinary approach was employed. To this end, a comprehensive analysis of gene expression together with the investigation of several physiological entities (texture, volatilome and content of polyphenolic compounds) was performed throughout fruit development and ripening. The transcriptomic profiling was conducted with two microarray platforms: a dedicated custom array (iRIPE) and a whole genome array specifically enriched with ripening-related genes for apple (WGAA). The transcriptomic and phenotypic changes following the application of 1-methylcyclopropene (1-MCP), an ethylene inhibitor leading to important modifications in overall fruit physiology, were also highlighted. The integrative comparative network analysis showed both negative and positive correlations between ripening-related transcripts and the accumulation of specific metabolites or texture components. The ripening distortion caused by the inhibition of ethylene perception, in addition to affecting the ethylene pathway, stimulated the de-repression of auxin-related genes, transcription factors and photosynthetic genes. Overall, the comprehensive repertoire of results obtained here advances the elucidation of the multi-layered climacteric mechanism of fruit ripening, thus suggesting a possible transcriptional circuit governed by hormones and transcription factors.


Assuntos
Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Malus/metabolismo , Ciclopropanos , Etilenos/antagonistas & inibidores , Frutas/efeitos dos fármacos , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Malus/efeitos dos fármacos , Malus/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
BMC Plant Biol ; 16: 44, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26863869

RESUMO

BACKGROUND: In melting flesh peaches, auxin is necessary for system-2 ethylene synthesis and a cross-talk between ethylene and auxin occurs during the ripening process. To elucidate this interaction at the transition from maturation to ripening and the accompanying switch from system-1 to system-2 ethylene biosynthesis, fruits of melting flesh and stony hard genotypes, the latter unable to produce system-2 ethylene because of insufficient amount of auxin at ripening, were treated with auxin, ethylene and with 1-methylcyclopropene (1-MCP), known to block ethylene receptors. The effects of the treatments on the different genotypes were monitored by hormone quantifications and transcription profiling. RESULTS: In melting flesh fruit, 1-MCP responses differed according to the ripening stage. Unexpectedly, 1-MCP induced genes also up-regulated by ripening, ethylene and auxin, as CTG134, similar to GOLVEN (GLV) peptides, and repressed genes also down-regulated by ripening, ethylene and auxin, as CTG85, a calcineurin B-like protein. The nature and transcriptional response of CTG134 led to discover a rise in free auxin in 1-MCP treated fruit. This increase was supported by the induced transcription of CTG475, an IAA-amino acid hydrolase. A melting flesh and a stony hard genotype, differing for their ability to synthetize auxin and ethylene amounts at ripening, were used to study the fine temporal regulation and auxin responsiveness of genes involved in the process. Transcriptional waves showed a tight interdependence between auxin and ethylene actions with the former possibly enhanced by the GLV CTG134. The expression of genes involved in the regulation of ripening, among which are several transcription factors, was similar in the two genotypes or could be rescued by auxin application in the stony hard. Only GLV CTG134 expression could not be rescued by exogenous auxin. CONCLUSIONS: 1-MCP treatment of peach fruit is ineffective in delaying ripening because it stimulates an increase in free auxin. As a consequence, a burst in ethylene production speeding up ripening occurs. Based on a network of gene transcriptional regulations, a model in which appropriate level of CTG134 peptide hormone might be necessary to allow the correct balance between auxin and ethylene for peach ripening to occur is proposed.


Assuntos
Etilenos , Frutas/crescimento & desenvolvimento , Ácidos Indolacéticos , Hormônios Peptídicos/fisiologia , Reguladores de Crescimento de Plantas/fisiologia , Prunus persica/crescimento & desenvolvimento , Etilenos/biossíntese
8.
Planta ; 240(5): 913-29, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24827911

RESUMO

MAIN CONCLUSION: MYB10.1 and MYB10.3, with bHLH3, are the likely regulators of anthocyanin biosynthesis in peach fruit. MYB10.1/2/3 forms a cluster on the same genomic fragment where the Anther color ( Ag ) trait is located. Anthocyanins are bioactive compounds responsible for the pigmentation of many plant parts such as leaves, flowers, fruits and roots, and have potential benefits to human health. In peach [Prunus persica (L.) Batsch], peel color is a key determinant for fruit quality and is regulated by flavonoids including anthocyanins. The R2R3 MYB transcription factors (TFs) control the expression of anthocyanin biosynthetic genes with the help of co-activators belonging to the basic-helix-loop-helix (bHLH) and WD40 repeat families. In the peach genome six MYB10-like and three bHLH-like TFs were identified as candidates to be the regulators of the anthocyanin accumulation, which, in yellow flesh fruits, is highest in the peel, abundant in the part of the mesocarp surrounding the stone and lowest in the mesocarp. The expression of MYB10.1 and MYB10.3 correlates with anthocyanin levels of different peach parts. They also have positive correlation with the expression of key structural genes of the anthocyanin pathway, such as CHS, F3H, and UFGT. Functions of peach MYB10s were tested in tobacco and shown to activate key genes in the anthocyanin pathway when bHLHs were co-expressed as partners. Overexpression of MYB10.1/bHLH3 and MYB10.3/bHLH3 activated anthocyanin production by up-regulating NtCHS, NtDFR and NtUFGT while other combinations were not, or much less, effective. As three MYB10 genes are localized in a genomic region where the Ag trait, responsible for anther pigmentation, is localized, it is proposed they are key determinant to introduce new peach cultivars with higher antioxidant level and pigmented fruit.


Assuntos
Antocianinas/biossíntese , Frutas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Prunus/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/classificação , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Frutas/metabolismo , Genoma de Planta/genética , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Prunus/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/classificação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Physiol Plant ; 146(1): 86-98, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22409726

RESUMO

Peach (Prunus persica var. laevis Gray) was chosen to unravel the molecular basis underlying the ability of spermidine (Sd) to influence fruit development and ripening. Field applications of 1 mM Sd on peach fruit at an early developmental stage, 41 days after full bloom (dAFB), i.e. at late stage S1, led to a slowing down of fruit ripening. At commercial harvest (125 dAFB, S4II) Sd-treated fruits showed a reduced ethylene production and flesh softening. The endogenous concentration of free and insoluble conjugated polyamines (PAs) increased (0.3-2.6-fold) 1 day after treatment (short-term response) butsoon it declined to control levels; starting from S3/S4, when soluble conjugated forms increased (up to five-fold relative to controls at ripening), PA levels became more abundant in treated fruits, (long-term response). Real-time reverse transcription-polymerase chain reaction analyses revealed that peaks in transcript levels of fruit developmental marker genes were shifted ahead in accord with a developmental slowing down. At ripening (S4I-S4II) the upregulation of the ethylene biosynthetic genes ACO1 and ACS1 was dramatically counteracted by Sd and this led to a strong downregulation of genes responsible for fruit softening, such as PG and PMEI. Auxin-related gene expression was also altered both in the short term (TRPB) and in the long term (GH3, TIR1 and PIN1), indicating that auxin plays different roles during development and ripening processes. Messenger RNA amounts of other hormone-related ripening-regulated genes, such as NCED and GA2-OX, were strongly downregulated at maturity. Results suggest that Sd interferes with fruit development/ripening by interacting with multiple hormonal pathways.


Assuntos
Etilenos/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/genética , Ácidos Indolacéticos/metabolismo , Prunus/crescimento & desenvolvimento , Prunus/metabolismo , Espermidina/metabolismo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Prunus/genética , Transdução de Sinais , Espermidina/farmacologia
10.
J Exp Bot ; 58(12): 3299-308, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17925301

RESUMO

Ethylene has long been regarded as the main regulator of ripening in climacteric fruits. The characterization of a few tomato mutants, unable to produce climacteric ethylene and to ripen their fruits even following treatments with exogenous ethylene, has shown that other factors also play an important role in the control of climacteric fruit ripening. In climacteric peach and tomato fruits it has been shown that, concomitant with ethylene production, increases in the amount of auxin can also be measured. In this work a genomic approach has been used in order to understand if such an auxin increase is functional to an independent role played by the hormone during ripening of the climacteric peach fruits. Besides the already known indirect activity on ripening due to its up-regulation of climacteric ethylene synthesis, it has been possible to show that auxin plays a role of its own during ripening of peaches. In fact, the hormone has shown the ability to regulate the expression of a number of different genes. Moreover, many genes involved in biosynthesis and transport and, in particular, the signalling (receptors, Auxin Response Factors and Aux/IAA) of auxin had increased expression in the mesocarp during ripening, thus strengthening the idea that this hormone is actively involved in the ripening of peaches. This study has also demonstrated the existence of an important cross-talk between auxin and ethylene, with genes in the auxin domain regulated by ethylene and genes in the ethylene domain regulated by auxin.


Assuntos
Etilenos/metabolismo , Frutas/fisiologia , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/fisiologia , Sequência de Bases , Primers do DNA , Frutas/genética , Genes de Plantas , Análise de Sequência com Séries de Oligonucleotídeos
11.
J Exp Bot ; 56(418): 2037-46, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15955790

RESUMO

Notwithstanding the economic importance of non-climacteric fruits like grape and strawberry, little is known about the mechanisms that regulate their ripening. Up to now no growth regulator has emerged with a primary role similar to that played by ethylene in the ripening of the climacteric fruits. Strawberries can produce ethylene, although in limited amounts. Two cDNAs coding for enzymes of the ethylene biosynthetic pathway (i.e. FaACO1 and FaACO2), and three cDNAs encoding different ethylene receptors have been isolated. Two receptors (i.e. FaEtr1 and FaErs1) belong to the type-I while the third (i.e. FaEtr2) belongs to the type-II group. The expression of both the ACO and the receptor-encoding genes has been studied in fruits at different stages of development and in fruits treated with hormones (i.e. ethylene and the auxin analogue NAA). All the data thus obtained have been correlated to the known data about ethylene production by strawberry fruits. Interestingly, a good correlation has resulted between the expression of the genes described in this work and the data of ethylene production. In particular, similarly to what occurs during climacteric fruit ripening, there is an increased synthesis of receptors concomitant with the increased synthesis of ethylene in strawberries as well. Moreover, the receptors mostly expressed in ripening strawberries are the type-II ones, that is those with a degenerate histidine-kinase domain. Since the latter domain is thought to establish a weaker link to the CTR1 proteins, even the little ethylene produced by ripening strawberries might be sufficient to trigger ripening-related physiological responses.


Assuntos
Etilenos/metabolismo , Fragaria/metabolismo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/fisiologia , Proteínas de Plantas/biossíntese , Receptores de Superfície Celular/biossíntese , Aminoácido Oxirredutases/metabolismo , DNA Complementar/metabolismo , DNA de Plantas/química , DNA de Plantas/metabolismo , Etilenos/biossíntese , Fragaria/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , RNA Mensageiro , RNA de Plantas/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA