Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 19(11): e1011005, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37934770

RESUMO

BACKGROUND: Kinesin motor proteins transport intracellular cargo, including mRNA, proteins, and organelles. Pathogenic variants in kinesin-related genes have been implicated in neurodevelopmental disorders and skeletal dysplasias. We identified de novo, heterozygous variants in KIF5B, encoding a kinesin-1 subunit, in four individuals with osteogenesis imperfecta. The variants cluster within the highly conserved kinesin motor domain and are predicted to interfere with nucleotide binding, although the mechanistic consequences on cell signaling and function are unknown. METHODS: To understand the in vivo genetic mechanism of KIF5B variants, we modeled the p.Thr87Ile variant that was found in two patients in the C. elegans ortholog, unc-116, at the corresponding position (Thr90Ile) by CRISPR/Cas9 editing and performed functional analysis. Next, we studied the cellular and molecular consequences of the recurrent p.Thr87Ile variant by microscopy, RNA and protein analysis in NIH3T3 cells, primary human fibroblasts and bone biopsy. RESULTS: C. elegans heterozygous for the unc-116 Thr90Ile variant displayed abnormal body length and motility phenotypes that were suppressed by additional copies of the wild type allele, consistent with a dominant negative mechanism. Time-lapse imaging of GFP-tagged mitochondria showed defective mitochondria transport in unc-116 Thr90Ile neurons providing strong evidence for disrupted kinesin motor function. Microscopy studies in human cells showed dilated endoplasmic reticulum, multiple intracellular vacuoles, and abnormal distribution of the Golgi complex, supporting an intracellular trafficking defect. RNA sequencing, proteomic analysis, and bone immunohistochemistry demonstrated down regulation of the mTOR signaling pathway that was partially rescued with leucine supplementation in patient cells. CONCLUSION: We report dominant negative variants in the KIF5B kinesin motor domain in individuals with osteogenesis imperfecta. This study expands the spectrum of kinesin-related disorders and identifies dysregulated signaling targets for KIF5B in skeletal development.


Assuntos
Cinesinas , Osteogênese Imperfeita , Animais , Humanos , Camundongos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Transporte/genética , Regulação para Baixo , Cinesinas/genética , Cinesinas/metabolismo , Células NIH 3T3 , Proteômica , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
2.
Am J Med Genet A ; 179(3): 475-479, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30569621

RESUMO

Genetic alterations leading to overactivation of mammalian target of rapamycin (mTOR) signaling result in brain overgrowth syndromes such as focal cortical dysplasia (FCD) and megalencephaly. Megalencephaly with cutis tri-color of the Blaschko-linear type pigmentary mosaicism and intellectual disability is a rare neurodevelopmental disorder attributed to the recurrent mosaic c.5930C > T (p.Thr1977Ile) MTOR variant. This variant was previously reported at low to intermediate levels of mosaicism in the peripheral blood of three unrelated individuals with consistent clinical findings. We report a fourth case of a 3-year-old female presenting with megalencephaly, obstructive hydrocephalus due to cerebral aqueductal stenosis, asymmetric polymicrogyria, dysgenesis of the corpus callosum, hypotonia, developmental delay, and cutaneous pigmentary mosaicism. Oligonucleotide and SNP chromosomal microarray (CMA), karyotype, and trio whole exome sequencing (WES) in the peripheral blood, as well as a targeted gene variant panel from fibroblasts derived from hyperpigmented and non-hyperpigmented skin did not detect any abnormalities in MTOR or other genes associated with brain overgrowth syndromes. Unlike the previously reported cases, the de novo c.5930C > T (p.Thr1977Ile) MTOR variant was detected at 32% mosaicism in our patient only after WES was performed on fibroblast-derived DNA from the hyperpigmented skin. This case demonstrates the tissue variability in mosaic expression of the recurrent p.Thr1977Ile MTOR variant, emphasizes the need for skin biopsies in the genetic evaluation of patients with skin pigmentary mosaicism, and expands the clinical phenotype associated with this pathogenic MTOR variant.


Assuntos
Malformações do Desenvolvimento Cortical/diagnóstico , Malformações do Desenvolvimento Cortical/genética , Megalencefalia/diagnóstico , Megalencefalia/genética , Mutação , Transtornos da Pigmentação/diagnóstico , Transtornos da Pigmentação/genética , Serina-Treonina Quinases TOR/genética , Alelos , Substituição de Aminoácidos , Pré-Escolar , Feminino , Genótipo , Humanos , Imageamento por Ressonância Magnética , Mosaicismo , Fenótipo , Polimorfismo de Nucleotídeo Único
3.
Mol Genet Metab ; 106(2): 237-40, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22551697

RESUMO

INTRODUCTION: Noonan syndrome (NS) is a disorder of RAS- mitogen activated protein kinase (MAPK) pathway with clinical features of skeletal dysplasia. This pathway is essential for regulation of cell differentiation and growth including bone homeostasis. Currently, limited information exists regarding bone mineralization in NS. MATERIALS AND METHODS: Using dual-energy X-ray absorptiometry (DXA), bone mineralization was evaluated in 12 subjects (mean age 8.7 years) with clinical features of NS. All subjects underwent genetic testing which showed mutations in PTPN11 gene (N=8) and SOS1 gene (N=1). In a subgroup of subjects with low bone mass, indices of calcium-phosphate metabolism and bone turnover were obtained. RESULTS: 50% of subjects had low bone mass as measured by DXA. Z-scores for bone mineral content (BMC) were calculated based on age, gender, height, and ethnicity. Mean BMC z-score was marginally decreased at -0.89 {95% CI -2.01 to 0.23; p=0.1}. Mean total body bone mineral density (BMD) z-score was significantly reduced at -1.87 {95% CI -2.73 to -1.0; p=0.001}. Mean height percentile was close to - 2 SD for this cohort, thus total body BMD z-scores were recalculated, adjusting for height age. Adjusted mean total body BMD z-score was less reduced but still significant at -0.82 {95% CI -1.39 to -0.25; p=0.009}. Biochemical evaluation for bone turnover was unremarkable except serum IGF-I and IGF-BP3 levels which were low-normal for age. DISCUSSION: Children with NS have a significantly lower total body BMD compared to age, gender, ethnicity and height matched controls. In addition, total BMC appears to trend lower in children with NS compared to controls. We conclude that the metabolic bone disease present resulted from a subtle variation in the interplay of osteoclast and osteoblast activity, without clear abnormalities being defined in the metabolism of either. Clinical significance of this finding needs to be validated by larger longitudinal studies. Also, histomorphometric analysis of bone tissue from NS patients and mouse model of NS may further elucidate the relationship between the RAS-MAPK pathway and skeletal homeostasis.


Assuntos
Osso e Ossos/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Síndrome de Noonan/metabolismo , Proteína Oncogênica p21(ras)/metabolismo , Adolescente , Densidade Óssea , Osso e Ossos/patologia , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Mutação , Síndrome de Noonan/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA