Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37034690

RESUMO

Previously we showed that neurodegeneration initiated by axonal insults depends in part on the stress-responsive kinase Perk (Larhammar et al., 2017). Here we show that Perk acts primarily through Activating Transcription Factor-4 (Atf4) to stimulate not only pro-apoptotic but also pro-regenerative responses following optic nerve injury. Using conditional knockout mice, we find an extensive Perk/Atf4-dependent transcriptional response that includes canonical Atf4 target genes and modest contributions by C/ebp homologous protein (Chop). Overlap with c-Jun-dependent transcription suggests interplay with a parallel stress pathway that couples regenerative and apoptotic responses. Accordingly, neuronal knockout of Atf4 recapitulates the neuroprotection afforded by Perk deficiency, and Perk or Atf4 knockout impairs optic axon regeneration enabled by disrupting the tumor suppressor Pten. These findings contrast with the transcriptional and functional consequences reported for CRISPR targeting of Atf4 or Chop and reveal an integral role for Perk/Atf4 in coordinating neurodegenerative and regenerative responses to CNS axon injury.

2.
Nat Immunol ; 24(4): 700-713, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36807640

RESUMO

Non-neuronal cells are key to the complex cellular interplay that follows central nervous system insult. To understand this interplay, we generated a single-cell atlas of immune, glial and retinal pigment epithelial cells from adult mouse retina before and at multiple time points after axonal transection. We identified rare subsets in naive retina, including interferon (IFN)-response glia and border-associated macrophages, and delineated injury-induced changes in cell composition, expression programs and interactions. Computational analysis charted a three-phase multicellular inflammatory cascade after injury. In the early phase, retinal macroglia and microglia were reactivated, providing chemotactic signals concurrent with infiltration of CCR2+ monocytes from the circulation. These cells differentiated into macrophages in the intermediate phase, while an IFN-response program, likely driven by microglia-derived type I IFN, was activated across resident glia. The late phase indicated inflammatory resolution. Our findings provide a framework to decipher cellular circuitry, spatial relationships and molecular interactions following tissue injury.


Assuntos
Macrófagos , Retina , Animais , Camundongos , Retina/lesões , Retina/metabolismo , Microglia , Sistema Nervoso Central , Monócitos
3.
Cell Rep ; 34(9): 108777, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33657370

RESUMO

Adult mammalian central nervous system (CNS) trauma interrupts neural networks and, because axonal regeneration is minimal, neurological deficits persist. Repair via axonal growth is limited by extracellular inhibitors and cell-autonomous factors. Based on results from a screen in vitro, we evaluate nearly 400 genes through a large-scale in vivo regeneration screen. Suppression of 40 genes using viral-driven short hairpin RNAs (shRNAs) promotes retinal ganglion cell (RGC) axon regeneration after optic nerve crush (ONC), and most are validated by separate CRISPR-Cas9 editing experiments. Expression of these axon-regeneration-suppressing genes is not significantly altered by axotomy. Among regeneration-limiting genes, loss of the interleukin 22 (IL-22) cytokine allows an early, yet transient, inflammatory response in the retina after injury. Reduced IL-22 drives concurrent activation of signal transducer and activator of transcription 3 (Stat3) and dual leucine zipper kinase (DLK) pathways and upregulation of multiple neuron-intrinsic regeneration-associated genes (RAGs). Including IL-22, our screen identifies dozens of genes that limit CNS regeneration. Suppression of these genes in the context of axonal damage could support improved neural repair.


Assuntos
Regeneração Nervosa/genética , Neurogênese/genética , Traumatismos do Nervo Óptico/genética , Nervo Óptico/metabolismo , Animais , Axônios/metabolismo , Axônios/patologia , Sistemas CRISPR-Cas , Dependovirus/genética , Feminino , Edição de Genes , Regulação da Expressão Gênica , Estudos de Associação Genética , Células HEK293 , Humanos , Interleucinas/genética , Interleucinas/metabolismo , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Nervo Óptico/patologia , Nervo Óptico/fisiopatologia , Traumatismos do Nervo Óptico/metabolismo , Traumatismos do Nervo Óptico/patologia , Traumatismos do Nervo Óptico/fisiopatologia , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Interleucina 22
4.
Neuron ; 94(6): 1112-1120.e4, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28641110

RESUMO

At least 30 types of retinal ganglion cells (RGCs) send distinct messages through the optic nerve to the brain. Available strategies of promoting axon regeneration act on only some of these types. Here we tested the hypothesis that overexpressing developmentally important transcription factors in adult RGCs could reprogram them to a "youthful" growth-competent state and promote regeneration of other types. From a screen of transcription factors, we identified Sox11 as one that could induce substantial axon regeneration. Transcriptome profiling indicated that Sox11 activates genes involved in cytoskeletal remodeling and axon growth. Remarkably, α-RGCs, which preferentially regenerate following treatments such as Pten deletion, were killed by Sox11 overexpression. Thus, Sox11 promotes regeneration of non-α-RGCs, which are refractory to Pten deletion-induced regeneration. We conclude that Sox11 can reprogram adult RGCs to a growth-competent state, suggesting that different growth-promoting interventions promote regeneration in distinct neuronal types.


Assuntos
Axônios/metabolismo , Regeneração Nervosa/genética , Crescimento Neuronal/genética , Traumatismos do Nervo Óptico/metabolismo , Células Ganglionares da Retina/metabolismo , Fatores de Transcrição SOXC/genética , Animais , Sobrevivência Celular , Perfilação da Expressão Gênica , Camundongos , Microscopia de Fluorescência , Traumatismos do Nervo Óptico/patologia , PTEN Fosfo-Hidrolase/genética , Regeneração/genética , Retina/metabolismo , Retina/patologia , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/patologia , Fatores de Transcrição SOXC/metabolismo
5.
Invest Ophthalmol Vis Sci ; 57(8): 3780-92, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27427859

RESUMO

PURPOSE: Mutations in the retinal transcription factor cone-rod homeobox (CRX) gene result in severe dominant retinopathies. A large animal model, the Rdy cat, carrying a spontaneous frameshift mutation in Crx, was reported previously. The present study aimed to further understand pathogenesis in this model by thoroughly characterizing the Rdy retina. METHODS: Structural and functional changes were found in a comparison between the retinas of CrxRdy/+ kittens and those of wild-type littermates and were determined at various ages by fundus examination, electroretinography (ERG), optical coherence tomography, and histologic analyses. RNA and protein expression changes of Crx and key target genes were analyzed using quantitative reverse-transcribed PCR, Western blot analysis, and immunohistochemistry. Transcription activity of the mutant Crx was measured by a dual-luciferase transactivation assay. RESULTS: CrxRdy/+ kittens had no recordable cone ERGs. Rod responses were delayed in development and markedly reduced at young ages and lost by 20 weeks. Photoreceptor outer segment development was incomplete and was followed by progressive outer retinal thinning starting in the cone-rich area centralis. Expression of cone and rod Crx target genes was significantly down-regulated. The mutant Crx allele was overexpressed, leading to high levels of the mutant protein lacking transactivation activity. CONCLUSIONS: The CrxRdy mutation exerts a dominant negative effect on wild-type Crx by overexpressing mutant protein. These findings, consistent with those of studies in a mouse model, support a conserved pathogenic mechanism for CRX frameshift mutations. The similarities between the feline eye and the human eye with the presence of a central region of high cone density makes the CrxRdy/+ cat a valuable model for preclinical testing of therapies for dominant CRX diseases.


Assuntos
Mutação da Fase de Leitura/genética , Proteínas de Homeodomínio/genética , Amaurose Congênita de Leber/genética , Transativadores/genética , Animais , Gatos , Adaptação à Escuridão/fisiologia , Modelos Animais de Doenças , Amaurose Congênita de Leber/patologia , Amaurose Congênita de Leber/fisiopatologia , Fenótipo , Retina/metabolismo , Retina/patologia , Retina/fisiopatologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Limiar Sensorial/fisiologia , Transcrição Gênica
6.
PLoS Genet ; 10(2): e1004111, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24516401

RESUMO

Cone-rod homeobox (CRX) protein is a "paired-like" homeodomain transcription factor that is essential for regulating rod and cone photoreceptor transcription. Mutations in human CRX are associated with the dominant retinopathies Retinitis Pigmentosa (RP), Cone-Rod Dystrophy (CoRD) and Leber Congenital Amaurosis (LCA), with variable severity. Heterozygous Crx Knock-Out (KO) mice ("+/-") have normal vision as adults and fail to model the dominant human disease. To investigate how different mutant CRX proteins produce distinct disease pathologies, we generated two Crx Knock-IN (K-IN) mouse models: Crx(E168d2) ("E168d2") and Crx(R90W) ("R90W"). E168d2 mice carry a frameshift mutation in the CRX activation domain, Glu168del2, which is associated with severe dominant CoRD or LCA in humans. R90W mice carry a substitution mutation in the CRX homeodomain, Arg90Trp, which is associated with dominant mild late-onset CoRD and recessive LCA. As seen in human patients, heterozygous E168d2 ("E168d2/+") but not R90W ("R90W/+") mice show severely impaired retinal function, while mice homozygous for either mutation are blind and undergo rapid photoreceptor degeneration. E168d2/+ mice also display abnormal rod/cone morphology, greater impairment of CRX target gene expression than R90W/+ or +/- mice, and undergo progressive photoreceptor degeneration. Surprisingly, E168d2/+ mice express more mutant CRX protein than wild-type CRX. E168d2neo/+, a subline of E168d2 with reduced mutant allele expression, displays a much milder retinal phenotype, demonstrating the impact of Crx expression level on disease severity. Both CRX([E168d2]) and CRX([R90W]) proteins fail to activate transcription in vitro, but CRX([E168d2]) interferes more strongly with the function of wild type (WT) CRX, supporting an antimorphic mechanism. E168d2 and R90W are mechanistically distinct mouse models for CRX-associated disease that will allow the elucidation of molecular mechanisms and testing of novel therapeutic approaches for different forms of CRX-associated disease.


Assuntos
Proteínas de Homeodomínio/genética , Amaurose Congênita de Leber/genética , Retinose Pigmentar/genética , Transativadores/genética , Animais , Modelos Animais de Doenças , Mutação da Fase de Leitura , Homozigoto , Humanos , Amaurose Congênita de Leber/patologia , Camundongos , Fenótipo , Células Fotorreceptoras Retinianas Cones , Degeneração Retiniana/genética , Retinose Pigmentar/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA