Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 128: 108747, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31955787

RESUMO

Peptide marker identification is one of the most important steps in the development of a mass spectrometry (MS) based method for allergen detection, since the robustness and sensitivity of the overall analytical method will strictly depend on the reliability of the proteotypic peptides tracing for each allergen. The European legislation in place issues the mandatory labelling of fourteen allergenic ingredients whenever used in different food formulations. Among these, six allergenic ingredients, namely milk, egg, peanut, soybean, hazelnut and almond, can be prioritized in light of their higher occurrence in food recalls for undeclared presence with serious risk decision. In this work, we described the results of a comprehensive evaluation of the current literature on MS-based allergen detection aiming at collecting all available information about proteins and peptide markers validated in independent studies for the six allergenic ingredients of interest. The main features of the targeted proteins were commented reviewing all details available about known isoforms and sequence homology particularly in plant-derived allergens. Several critical aspects affecting peptide markers reliability were discussed and according to this evaluation a final short-list of candidate markers was compiled likely to be standardized and implemented in MS methods for allergen analysis.


Assuntos
Alérgenos/análise , Alérgenos/imunologia , Análise de Alimentos/métodos , Hipersensibilidade Alimentar/imunologia , Espectrometria de Massas/métodos , Peptídeos/análise , Biomarcadores/análise , Peptídeos/imunologia , Reprodutibilidade dos Testes
2.
PLoS One ; 12(11): e0187415, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29117222

RESUMO

BACKGROUND: Acid-hydrolyzed wheat proteins (acid-HWPs) have been shown to provoke severe allergic reactions in Europe and Japan that are distinct from classical wheat allergies. Acid-HWPs were shown to contain neo-epitopes induced by the deamidation of gluten proteins. However, products with variable rates of deamidation can be found. OBJECTIVES: In this work, we studied the effect of the extent of wheat proteins deamidation on its allergenicity. A recombinant chimeric IgE was produced and compared to patients' IgE for its capacity to assess the IgE-mediated triggering potential of acid-HWPs. METHODS: Sera from acid-HWP allergic patients were analyzed via ELISA and a functional basophil assay for their IgE reactivity to wheat proteins with different deamidation levels. A chimeric mouse/human IgE (chIgE-DG1) specific for the main neo-epitope, QPEEPFPE, involved in allergy to acid-HWPs was characterized with respect to its functionality and its reactivity compared to that of patients' IgE. RESULTS: Acid-HWPs with medium (30%) and high (50-60%) deamidation levels displayed a markedly stronger IgE binding and capacity to activate basophils than those of samples with weak (15%) deamidation levels. The monoclonal chIgE-DG1 allowed basophil degranulation in the presence of deamidated wheat proteins. ChIgE-DG1 was found to mimic patients' IgE reactivity and displayed the same ability to rank acid-HWP products in a degranulation assay. CONCLUSION: Increasing the deamidation level of products from 15% to 60% resulted in an approximately 2-fold increase in their antigenicity and a 100-fold increase in their eliciting potential. The chimeric ChIgE-DG1 may be a useful tool to evaluate functionalized glutens for their allergenic potential. By mimicking patient sera reactivity, chIgE-DG1 also provided data on the patients' IgE repertoire and on the functionality of certain repeated epitopes in gluten proteins.


Assuntos
Alérgenos/imunologia , Glutens/imunologia , Imunoglobulina E/imunologia , Hidrolisados de Proteína/imunologia , Hipersensibilidade a Trigo/imunologia , Animais , Degranulação Celular , Ensaio de Imunoadsorção Enzimática , Células HEK293 , Humanos , Peptídeos/metabolismo , Ratos
3.
J Agric Food Chem ; 65(18): 3693-3701, 2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-28434227

RESUMO

Heated foods are recommended for avoiding sensitization to food proteins, but depending on the physicochemical conditions during heating, more or less unfolded proteins aggregate differently. Whether the aggregation process could modulate allergenicity was investigated. Heating ovalbumin in opposite electrostatic conditions led to small (A-s, about 50 nm) and large (A-L, about 65 µm) aggregates that were used to sensitize mice. The symptoms upon oral challenge and rat basophil leukemia degranulation with native ovalbumin differed on the basis of which aggregates were used during the sensitization. Immunoglobulin-E (IgE) production was significantly lower with A-s than with A-L. Although two common linear IgE-epitopes were found, the aggregates bound and cross-linked IgE similarly or differently, depending on the sensitizing aggregate. The ovalbumin aggregates thus displayed a lower allergenic potential when formed under repulsive rather than nonrepulsive electrostatic conditions. This further demonstrates that food structure modulates the immune response during the sensitization phase with some effects on the elicitation phase of an allergic reaction and argues for the need to characterize the aggregation state of allergens.


Assuntos
Alérgenos/química , Alérgenos/imunologia , Hipersensibilidade a Ovo/imunologia , Ovalbumina/química , Ovalbumina/imunologia , Animais , Basófilos/imunologia , Feminino , Temperatura Alta , Humanos , Imunoglobulina G/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Agregados Proteicos , Ratos , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA