RESUMO
Loss of p53 function is known to compromise cell cycle regulation, inductionof apoptosis, and DNA damage repair and can facilitate neoplastic transformation of cells. Mutations in the p53 gene are identified frequently in breast carcinomas. Li-Fraumeni patients inheriting a mutant p53 allele have an increased risk for developing tumors including breast cancer. Although mouse lines carrying mutations in the p53 gene have been generated, they die primarily of lymphoma and thus to date provide a limited model for the study of this disease and the role of p53 in nonfamilial breast cancer. An increasing body of literature suggests that the incidence of various tumors is determined largely by the genetic background on which mutations are studied. In addition, population studies and studies in animals suggest that environmental factors, together with genetic factors, determine overall risk for development of specific types of tumors. We therefore examined the impact of genetic background together with exposure to ionizing radiation on the development of tumors, particularly mammary tumors, in p53-deficient animals. We report here that modifier alleles present in the BALB/c strain increase the incidence of hemangiosarcomas [15 of 53 (28.3%); P = 0.0007] in p53(-/-) mice above rates reported previously in p53(-/-) mice on a mixed background as compared to the incidence observed in DBA/p53(-/-) mice. However, no increase in the frequency of mammary tumors is seen in these mice or in p53(-/-) DBA/2 animals, nor was an increase in mammary tumors observed in the DBA/2 p53(+/-) mice, even after exposure to 5 Gy of whole-body ionizing radiation. In contrast, a significant increase in the incidence of mammary tumors was observed in similarly treated BALB/c p53(+/-) mice (37.3% versus 6.8%; P = 0.0007). This was accompanied by a comparable decrease in the incidence of lymphomas. These results show that environmental agents together with genetic factors can increase the frequency and decrease the latency of mammary tumors, leading to an incidence similar to that observed in Li-Fraumeni syndrome. Furthermore, it suggests that the risk of development of a particular type of tumor by individuals deficient in p53 after exposure to damaging agents can be influenced by modifier alleles.
Assuntos
Cocarcinogênese , Neoplasias Mamárias Experimentais/etiologia , Neoplasias Mamárias Experimentais/genética , Neoplasias Induzidas por Radiação/genética , Proteína Supressora de Tumor p53/deficiência , Alelos , Animais , Cruzamentos Genéticos , DNA/efeitos da radiação , Dano ao DNA , Feminino , Genes p53/genética , Predisposição Genética para Doença , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos DBA , Neoplasias Induzidas por Radiação/etiologia , Proteína Supressora de Tumor p53/genética , Irradiação Corporal Total/efeitos adversosAssuntos
Doenças do Cão/diagnóstico por imagem , Neoplasias Ovarianas/veterinária , Teratoma/veterinária , Animais , Diagnóstico Diferencial , Doenças do Cão/patologia , Cães , Feminino , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/patologia , Radiografia , Teratoma/diagnóstico por imagem , Teratoma/patologiaRESUMO
The immunocytochemical distribution of galanin-containing perikarya and nerve terminals in the brain of Rana esculenta and Xenopus laevis was determined with antisera directed toward either porcine or rat galanin. The pattern of galanin-like immunoreactivity appeared to be identical with antisera directed toward either target antigen. The distribution of galanin-like immunoreactivity was similar in Rana esculenta and Xenopus laevis except for the absence of a distinct laminar distribution of immunoreactivity in the optic tectum of Xenopus laevis. Galanin-containing perikarya were located in all major subdivisions of the brain except the metencephalon. In the telencephalon, immunoreactive perikarya were detected in the pars medialis of the amygdala and the preoptic area. In the diencephalon, immunoreactive perikarya were detected in the caudal half of the suprachiasmatic nucleus, the nucleus of the periventricular organ, the ventral hypothalamus, and the median eminence. In the mesencephalon, immunoreactive perikarya were detected near the midline of the rostroventral tegmentum, in the torus semicircularis and, occasionally, in lamina A and layer 6 of the optic tectum. In the myelencephalon, labelled perikarya were detected only in the caudal half of the nucleus of the solitary tract. Immunoreactive nerve fibers of varying density were observed in all subdivisions of the brain with the densest accumulations of fibers occurring in the pars lateralis of the amygdala and the preoptic area. Dense accumulations of nerve fibers were also found in the lateral septum, the medial forebrain bundle, the periventricular region of the diencephalon, the ventral hypothalamus, the median eminence, the mesencephalic central gray, the laminar nucleus of the torus semicircularis, several laminae of the optic tectum, the interpeduncular nucleus, the isthmic nucleus, the central gray of the rhombencephalon, and the dorsolateral caudal medulla. The extensive system of galanin-containing perikarya and nerve fibers in the brain of representatives of two families of anurans showed many similarities to the distribution of galanin-containing perikarya and nerve fibers previously described for the mammalian brain.