Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Metallomics ; 11(9): 1567-1578, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31482903

RESUMO

In this work we report on the synthesis and physiochemical/biological characterization of a peptide encompassing the first thirteen residues of neurotrophin-3 (NT-3). The protein capability to promote neurite outgrowth and axonal branching by a downstream mechanism that involves the increase of the cAMP response element-binding level (CREB) was found for the NT3(1-13) peptide, thus validating its protein mimetic behaviour. Since copper ions are also involved in neurotransmission and their internalization may be an essential step in neuron differentiation and CREB phosphorylation, the peptide and its copper complexes were characterized by potentiometric and spectroscopic techniques, including UV-visible, CD and EPR. To have a detailed picture of the coordination features of the copper complexes with NT3(1-13), we also scrutinized the two peptide fragments encompassing the shorter sequences 1-5 and 5-13, respectively, showing that the amino group is the main anchoring site for Cu(ii) at physiological pH. The peptide activity increased in the presence of copper ions. The effect of copper(ii) addition is more marked for NT3(1-13) than the other two peptide fragments, in agreement with its higher affinity for metal ions. Confocal microscopy measurements carried out on fluorescently labelled NT3(1-13) indicated that copper ions increase peptide internalization.


Assuntos
Complexos de Coordenação/farmacologia , Cobre/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Crescimento Neuronal/efeitos dos fármacos , Neurotrofina 3/farmacologia , Peptídeos/farmacologia , Linhagem Celular , Complexos de Coordenação/química , Cobre/química , Humanos , Neurotrofina 3/química , Peptídeos/química , Fosforilação/efeitos dos fármacos
2.
Cells ; 8(4)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30939824

RESUMO

Nerve growth factor (NGF) is a protein necessary for development and maintenance of the sympathetic and sensory nervous systems. We have previously shown that the NGF N-terminus peptide NGF(1-14) is sufficient to activate TrkA signaling pathways essential for neuronal survival and to induce an increase in brain-derived neurotrophic factor (BDNF) expression. Cu2+ ions played a critical role in the modulation of the biological activity of NGF(1-14). Using computational, spectroscopic, and biochemical techniques, here we report on the ability of a newly synthesized peptide named d-NGF(1-15), which is the dimeric form of NGF(1-14), to interact with TrkA. We found that d-NGF(1-15) interacts with the TrkA-D5 domain and induces the activation of its signaling pathways. Copper binding to d-NGF(1-15) stabilizes the secondary structure of the peptides, suggesting a strengthening of the noncovalent interactions that allow for the molecular recognition of D5 domain of TrkA and the activation of the signaling pathways. Intriguingly, the signaling cascade induced by the NGF peptides ultimately involves cAMP response element-binding protein (CREB) activation and an increase in BDNF protein level, in keeping with our previous result showing an increase of BDNF mRNA. All these promising connections can pave the way for developing interesting novel drugs for neurodegenerative diseases.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cobre/farmacologia , Fator de Crescimento Neural/metabolismo , Sequência de Aminoácidos , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Dimerização , Endocitose/efeitos dos fármacos , Feminino , Ionóforos/farmacologia , Fator de Crescimento Neural/química , Células PC12 , Fenótipo , Fosforilação/efeitos dos fármacos , Domínios Proteicos , Ratos , Ratos Wistar , Receptor trkA/química , Receptor trkA/metabolismo , Termodinâmica
3.
Chemistry ; 22(49): 17767-17775, 2016 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-27759905

RESUMO

Many biochemical pathways involving nerve growth factor (NGF), a neurotrophin with copper(II) binding abilities, are regulated by the ubiquitin (Ub) proteasome system. However, whether NGF binds Ub and the role played by copper(II) ions in modulating their interactions have not yet been investigated. Herein NMR spectroscopy, circular dichroism, ESI-MS, and titration calorimetry are employed to characterize the interactions of NGF with Ub. NGF1-14 , which is a short model peptide encompassing the first 14 N-terminal residues of NGF, binds the copper-binding regions of Ub (KD =8.6 10-5 m). Moreover, the peptide undergoes a random coil-polyproline type II helix structural conversion upon binding to Ub. Notably, copper(II) ions inhibit NGF1-14 /Ub interactions. Further experiments performed with the full-length NGF confirmed the existence of a copper(II)-dependent association between Ub and NGF and indicated that the N-terminal domain of NGF was a valuable paradigm that recapitulated many traits of the full-length protein.


Assuntos
Cobre/química , Fator de Crescimento Neural/química , Peptídeos/química , Ubiquitina/química , Dicroísmo Circular , Humanos , Íons , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Ligação Proteica
4.
ACS Chem Neurosci ; 6(8): 1379-92, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25939060

RESUMO

Ever since the discovery of its neurite growth promoting activity in sympathetic and sensory ganglia, nerve growth factor (NGF) became the prototype of the large family of neurotrophins. The use of primary cultures and clonal cell lines has revealed several distinct actions of NGF and other neurotrophins. Among several models of NGF activity, the clonal cell line PC12 is the most widely employed. Thus, in the presence of NGF, through the activation of the transmembrane protein TrkA, these cells undergo a progressive mitotic arrest and start to grow electrically excitable neuritis. A vast number of studies opened intriguing aspects of NGF mechanisms of action, its biological properties, and potential use as therapeutic agents. In this context, identifying and utilizing small portions of NGF is of great interest and involves several human diseases including Alzheimer's disease. Here we report the specific action of the peptide encompassing the 1-14 sequence of the human NGF (NGF(1-14)), identified on the basis of scattered indications present in literature. The biological activity of NGF(1-14) was tested on PC12 cells, and its binding with TrkA was predicted by means of a computational approach. NGF(1-14) does not elicit the neurite outgrowth promoting activity, typical of the whole protein, and it only has a moderate action on PC12 proliferation. However, this peptide exerts, in a dose and time dependent fashion, an effective and specific NGF-like action on some highly conserved and biologically crucial intermediates of its intracellular targets such as Akt and CREB. These findings indicate that not all TrkA pathways must be at all times operative, and open the possibility of testing each of them in relation with specific NGF needs, biological actions, and potential therapeutic use.


Assuntos
Fator de Crescimento Neural/química , Fator de Crescimento Neural/farmacologia , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Animais , Crescimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Humanos , Simulação de Acoplamento Molecular , Fator de Crescimento Neural/genética , Neuritos/efeitos dos fármacos , Neuritos/fisiologia , Neurogênese/efeitos dos fármacos , Fármacos Neuroprotetores/química , Células PC12 , Fosforilação/efeitos dos fármacos , Ratos , Receptor trkA/metabolismo , Fatores de Tempo
5.
Phys Chem Chem Phys ; 16(4): 1536-44, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24305555

RESUMO

This study tackles the interaction between gold surfaces and two peptide fragments named NGF(1-14) and BDNF(1-12), able to mimic the proliferative activity of the nerve growth factor (NGF) and the brain derived neurotrophic factor (BDNF), respectively. The physical adsorption processes on the solid surface from both single and binary peptide solutions, at physiological and acid pH, were investigated by QCM-D and CD experiments, as well as by molecular dynamics calculations. The relevant physicochemical properties at the hybrid bio-interface, including peptide-surface interaction, conformational changes, hydrodynamic thickness, viscoelastic parameters, and competitive vs. synergic behaviour of the two peptide fragments towards the surface, were scrutinized. Biological assays with neuronal cells pointed to the maintenance of the biological activity of NGF(1-14) and BDNF(1-12) peptide molecules within the adlayers on the gold surface.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/química , Ouro/química , Fator de Crescimento Neural/química , Peptídeos/química , Adsorção , Linhagem Celular Tumoral , Dicroísmo Circular , Humanos , Simulação de Dinâmica Molecular , Estrutura Molecular , Peptídeos/síntese química , Técnicas de Microbalança de Cristal de Quartzo , Propriedades de Superfície
6.
Inorg Chem ; 52(19): 11075-83, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-24070197

RESUMO

Brain-derived neurotrophic factor (BDNF) is a neurotrophin essential for neuronal differentiation, growth, and survival; it is involved in memory formation and higher cognitive functions. The N-terminal domain of BDNF is crucial for the binding selectivity and activation of its specific TrkB receptor. Zn(2+) ion binding may influence BDNF activity. Zn(2+) complexes with the peptide fragment BDNF(1-12) encompassing the sequence 1-12 of the N-terminal domain of BDNF were studied by means of potentiometry, electrospray mass spectrometry, NMR, and density functional theory (DFT) approaches. The predominant Zn(2+) complex species, at physiological pH, is [ZnL] in which the metal ion is bound to an amino, an imidazole, and two water molecules (NH2, N(Im), and 2O(water)) in a tetrahedral environment. DFT-based geometry optimization of the zinc coordination environment showed a hydrogen bond between the carboxylate and a water molecule bound to zinc in [ZnL]. The coordination features of the acetylated form [AcBDNF(1-12)] and of a single mutated peptide [BDNF(1-12)D3N] were also characterized, highlighting the role of the imidazole side chain as the first anchoring site and ruling out the direct involvement of the aspartate residue in the metal binding. Zn(2+) addition to the cell culture medium induces an increase in the proliferative activity of the BDNF(1-12) peptide and of the whole protein on the SHSY5Y neuroblastoma cell line. The effect of Zn(2+) is opposite to that previously observed for Cu(2+) addition, which determines a decrease in the proliferative activity for both peptide and protein, suggesting that these metals might discriminate and modulate differently the activity of BDNF.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/química , Fragmentos de Peptídeos/química , Teoria Quântica , Zinco/química , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Complexos de Coordenação/química , Estabilidade de Medicamentos , Humanos , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Fragmentos de Peptídeos/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Zinco/farmacologia
7.
Chemistry ; 18(49): 15618-31, 2012 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-23135810

RESUMO

Brain-derived neurotrophic factor (BDNF) is a neurotrophin that influences development, maintenance, survival, and synaptic plasticity of central and peripheral nervous systems. Altered BDNF signaling is involved in several neurodegenerative disorders including Alzheimer's disease. Metal ions may influence the BDNF activity and it is well known that the alteration of Cu(2+) homeostasis is a prominent factor in the development of neurological pathologies. The N-terminal domain of BDNF represents the recognition site of its specific receptor TrkB, and metal ions interaction with this protein domain may influence the protein/receptor interaction. In spite of this, no data inherent the interaction of BDNF with Cu(2+) ions has been reported up to now. Cu(2+) complexes of the peptide fragment BDNF(1-12) encompassing the sequence 1-12 of N-terminal domain of human BDNF protein were characterized by means of potentiometry, spectroscopic methods (UV/Vis, CD, EPR), parallel tempering simulations and DFT-geometry optimizations. Coordination features of the acetylated form, Ac-BDNF(1-12), were also characterized to understand the involvement of the terminal amino group. Whereas, an analogous peptide, BDNF(1-12)D3N, in which the aspartate residue was substituted by an asparagine, was synthesized to provide evidence on the possible role of carboxylate group in Cu(2+) coordination. The results demonstrated that the amino group is involved in metal binding and the metal coordination environment of the predominant complex species at physiological pH consisted of one amino group, two amide nitrogen atoms, and one carboxylate group. Noteworthy, a strong decrease of the proliferative activity of both BDNF(1-12) and the whole protein on a SHSY5Y neuroblastoma cell line was found after treatment in the presence of Cu(2+). The effect of metal addition is opposite to that observed for the analogous fragment of nerve growth factor (NGF) protein, highlighting the role of specific domains, and suggesting that Cu(2+) may drive different pathways for the BDNF and NGF in physiological as well as pathological conditions.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cobre/química , Cobre/metabolismo , Fator de Crescimento Neural/química , Fator de Crescimento Neural/metabolismo , Fragmentos de Peptídeos/química , Sequência de Aminoácidos , Sítios de Ligação , Dicroísmo Circular , Humanos , Fragmentos de Peptídeos/metabolismo , Espectrofotometria Ultravioleta
8.
Chemistry ; 17(13): 3726-38, 2011 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-21394800

RESUMO

There is a significant overlap between brain areas with Zn(2+) and Cu(2+) pathological dys-homeostasis and those in which the nerve growth factor (NGF) performs its biological role. The protein NGF is necessary for the development and maintenance of the sympathetic and sensory nervous systems. Its flexible N-terminal region has been shown to be a critical domain for TrkA receptor binding and activation. Computational analyses show that Zn(2+) and Cu(2+) form pentacoordinate complexes involving both the His4 and His8 residues of the N-terminal domain of one monomeric unit and the His84 and Asp105 residues of the other monomeric unit of the NGF active dimer. To date, neither experimental data on the coordination features have been reported, nor has one of the hypotheses according to which Zn(2+) and Cu(2+) may have different binding environments or the Ser1 α-amino group could be involved in coordination been supported. The peptide fragment, encompassing the 1-14 sequence of the human NGF amino-terminal domain (NGF(1-14)), blocked at the C terminus, was synthesised and its Cu(2+) and Zn(2+) complexes characterized by means of potentiometric and spectroscopic (UV/Vis, CD, NMR, and EPR) techniques. The N-terminus-acetylated form of NGF(1-14) was also investigated to evaluate the involvement of the Ser1 α-amino group in metal-ion coordination. Our results demonstrate that the amino group is the first anchoring site for Cu(2+) and is involved in Zn(2+) coordination at physiological pH. Finally, a synergic proliferative activity of both NGF(1-14) and the whole protein on SHSY5Y neuroblastoma cell line was found after treatment in the presence of Cu(2+). This effect was not observed after treatment with the N-acetylated peptide fragment, demonstrating a functional involvement of the N-terminal amino group in metal binding and peptide activity.


Assuntos
Cobre/química , Fator de Crescimento Neural/química , Fragmentos de Peptídeos/química , Receptor trkA/química , Zinco/química , Cobre/metabolismo , Humanos , Dados de Sequência Molecular , Estrutura Molecular , Fator de Crescimento Neural/metabolismo , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Receptor trkA/metabolismo , Espectrofotometria Ultravioleta , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA