Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Methods ; 230: 9-20, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39032720

RESUMO

Guanine-rich nucleic acids can form intramolecularly folded four-stranded structures known as G-quadruplexes (G4s). Traditionally, G4 research has focused on short, highly modified DNA or RNA sequences that form well-defined homogeneous compact structures. However, the existence of longer sequences with multiple G4 repeats, from proto-oncogene promoters to telomeres, suggests the potential for more complex higher-order structures with multiple G4 units that might offer selective drug-targeting sites for therapeutic development. These larger structures present significant challenges for structural characterization by traditional high-resolution methods like multi-dimensional NMR and X-ray crystallography due to their molecular complexity. To address this current challenge, we have developed an integrated structural biology (ISB) platform, combining experimental and computational methods to determine self-consistent molecular models of higher-order G4s (xG4s). Here we outline our ISB method using two recent examples from our lab, an extended c-Myc promoter and long human telomere G4 repeats, that highlights the utility and generality of our approach to characterizing biologically relevant xG4s.

2.
PLoS One ; 17(6): e0270165, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35709230

RESUMO

DNA G-quadruplexes (G4s) are now widely accepted as viable targets in the pursuit of anticancer therapeutics. To date, few small molecules have been identified that exhibit selectivity for G4s over alternative forms of DNA, such as the ubiquitous duplex. We posit that the lack of current ligand specificity arises for multiple reasons: G4 atomic models are often small, monomeric, single quadruplex structures with few or no druggable pockets; targeting G-tetrad faces frequently results in the enrichment of extended electron-deficient polyaromatic end-pasting scaffolds; and virtual drug discovery efforts often under-sample chemical search space. We show that by addressing these issues we can enrich for non-standard molecular templates that exhibit high selectivity towards G4s over other forms of DNA. We performed an extensive virtual screen against the higher-order hTERT core promoter G4 that we have previously characterized, targeting 12 of its unique loop and groove pockets using libraries containing 40 million drug-like compounds for each screen. Using our drug discovery funnel approach, which utilizes high-throughput fluorescence thermal shift assay (FTSA) screens, microscale thermophoresis (MST), and orthogonal biophysical methods, we have identified multiple unique G4 binding scaffolds. We subsequently used two rounds of catalogue-based SAR to increase the affinity of a disubstituted 2-aminoethyl-quinazoline that stabilizes the higher-order hTERT G-quadruplex by binding across its G4 junctional sites. We show selectivity of its binding affinity towards hTERT is virtually unaffected in the presence of near-physiological levels of duplex DNA, and that this molecule downregulates hTERT transcription in breast cancer cells.


Assuntos
Quadruplex G , DNA/genética , Descoberta de Drogas , Ligantes , Regiões Promotoras Genéticas
3.
Nucleic Acids Res ; 50(7): 4127-4147, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35325198

RESUMO

We report on higher-order G-quadruplex structures adopted by long promoter sequences obtained by an iterative integrated structural biology approach. Our approach uses quantitative biophysical tools (analytical ultracentrifugation, small-angle X-ray scattering, and circular dichroism spectroscopy) combined with modeling and molecular dynamics simulations, to derive self-consistent structural models. The formal resolution of our approach is 18 angstroms, but in some cases structural features of only a few nucleotides can be discerned. We report here five structures of long (34-70 nt) wild-type sequences selected from three cancer-related promoters: c-Myc, c-Kit and k-Ras. Each sequence studied has a unique structure. Three sequences form structures with two contiguous, stacked, G-quadruplex units. One longer sequence from c-Myc forms a structure with three contiguous stacked quadruplexes. A longer c-Kit sequence forms a quadruplex-hairpin structure. Each structure exhibits interfacial regions between stacked quadruplexes or novel loop geometries that are possible druggable targets. We also report methodological advances in our integrated structural biology approach, which now includes quantitative CD for counting stacked G-tetrads, DNaseI cleavage for hairpin detection and SAXS model refinement. Our results suggest that higher-order quadruplex assemblies may be a common feature within the genome, rather than simple single quadruplex structures.


Assuntos
Quadruplex G , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Dicroísmo Circular , Espalhamento a Baixo Ângulo , Difração de Raios X
4.
Arch Toxicol ; 96(2): 511-524, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34783865

RESUMO

Arylamine N-acetyltransferase 1 (NAT1) plays a pivotal role in the metabolism of carcinogens and is a drug target for cancer prevention and/or treatment. A protein-ligand virtual screening of 2 million chemicals was ranked for predicted binding affinity towards the inhibition of human NAT1. Sixty of the five hundred top-ranked compounds were tested experimentally for inhibition of recombinant human NAT1 and N-acetyltransferase 2 (NAT2). The most promising compound 9,10-dihydro-9,10-dioxo-1,2-anthracenediyl diethyl ester (compound 10) was found to be a potent and selective NAT1 inhibitor with an in vitro IC50 of 0.75 µM. Two structural analogs of this compound were selective but less potent for inhibition of NAT1 whereas a third structural analog 1,2-dihydroxyanthraquinone (a compound 10 hydrolysis product also known as Alizarin) showed comparable potency and efficacy for human NAT1 inhibition. Compound 10 inhibited N-acetylation of the arylamine carcinogen 4-aminobiphenyl (ABP) both in vitro and in DNA repair-deficient Chinese hamster ovary (CHO) cells in situ stably expressing human NAT1 and CYP1A1. Compound 10 and Alizarin effectively inhibited NAT1 in cryopreserved human hepatocytes whereas inhibition of NAT2 was not observed. Compound 10 caused concentration-dependent reductions in DNA adduct formation and DNA double-strand breaks following metabolism of aromatic amine carcinogens beta-naphthylamine and/or ABP in CHO cells. Compound 10 inhibited proliferation and invasion in human breast cancer cells and showed selectivity towards tumorigenic versus non-tumorigenic cells. In conclusion, our study identifies potent, selective, and efficacious inhibitors of human NAT1. Alizarin's ability to inhibit NAT1 could reduce breast cancer metastasis particularly to bone.


Assuntos
Arilamina N-Acetiltransferase/antagonistas & inibidores , Neoplasias da Mama/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Isoenzimas/antagonistas & inibidores , Animais , Antraquinonas/farmacologia , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Células CHO , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Simulação por Computador , Cricetinae , Cricetulus , Adutos de DNA/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Inibidores Enzimáticos/administração & dosagem , Hepatócitos/enzimologia , Humanos , Concentração Inibidora 50
5.
Cancers (Basel) ; 13(16)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34439090

RESUMO

An elevated expression of phosphoserine aminotransferase 1 (PSAT1) has been observed in multiple tumor types and is associated with poorer clinical outcomes. Although PSAT1 is postulated to promote tumor growth through its enzymatic function within the serine synthesis pathway (SSP), its role in cancer progression has not been fully characterized. Here, we explore a putative non-canonical function of PSAT1 that contributes to lung tumor progression. Biochemical studies found that PSAT1 selectively interacts with pyruvate kinase M2 (PKM2). Amino acid mutations within a PKM2-unique region significantly reduced this interaction. While PSAT1 loss had no effect on cellular pyruvate kinase activity and PKM2 expression in non-small-cell lung cancer (NSCLC) cells, fractionation studies demonstrated that the silencing of PSAT1 in epidermal growth factor receptor (EGFR)-mutant PC9 or EGF-stimulated A549 cells decreased PKM2 nuclear translocation. Further, PSAT1 suppression abrogated cell migration in these two cell types whereas PSAT1 restoration or overexpression induced cell migration along with an elevated nuclear PKM2 expression. Lastly, the nuclear re-expression of the acetyl-mimetic mutant of PKM2 (K433Q), but not the wild-type, partially restored cell migration in PSAT1-silenced cells. Therefore, we conclude that, in response to EGFR activation, PSAT1 contributes to lung cancer cell migration, in part, by promoting nuclear PKM2 translocation.

6.
Exp Cell Res ; 404(2): 112637, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34019908

RESUMO

Karyopherin beta 1 (Kpnß1) is a major nuclear import receptor that mediates the import of cellular cargoes into the nucleus. Recently it has been shown that Kpnß1 is highly expressed in several cancers, and its inhibition by siRNA induces apoptotic cancer cell death, while having little effect on non-cancer cells. This study investigated the effect of a novel small molecule, Inhibitor of Nuclear Import-60 (INI-60), on cancer cell biology, as well as nuclear import activities associated with Kpnß1, and cancer progression in vivo using cervical and oesophageal cancer cell lines. INI-60 treatment resulted in the inhibition of cancer cell proliferation, colony formation, migration and invasion, and induced a G1/S cell cycle arrest, followed by cancer cell death via apoptosis. Non-cancer cells were minimally affected by INI-60 at concentrations that inhibited cancer cells. INI-60 treatment altered the localisation of Kpnß1 and its cargoes, NFκB/p65, NFAT and AP-1, and the overexpression of Kpnß1 reduced INI-60 cytotoxicity. INI-60 also inhibited KYSE 30 oesophageal cancer cell line growth in vivo. Taken together, these results show that INI-60 inhibits the nuclear import of Kpnß1 cargoes and interferes with cancer cell biology. INI-60 presents as a potential therapeutic approach for cancers of different tissue origins and warrants further investigation as a novel anti-cancer agent.


Assuntos
Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , beta Carioferinas/antagonistas & inibidores , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética , beta Carioferinas/genética
7.
J Biol Chem ; 294(31): 11920-11933, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31201273

RESUMO

Human guanylate kinase (hGMPK) is the only known enzyme responsible for cellular GDP production, making it essential for cellular viability and proliferation. Moreover, hGMPK has been assigned a critical role in metabolic activation of antiviral and antineoplastic nucleoside-analog prodrugs. Given that hGMPK is indispensable for producing the nucleotide building blocks of DNA, RNA, and cGMP and that cancer cells possess elevated GTP levels, it is surprising that a detailed structural and functional characterization of hGMPK is lacking. Here, we present the first high-resolution structure of hGMPK in the apo form, determined with NMR spectroscopy. The structure revealed that hGMPK consists of three distinct regions designated as the LID, GMP-binding (GMP-BD), and CORE domains and is in an open configuration that is nucleotide binding-competent. We also demonstrate that nonsynonymous single-nucleotide variants (nsSNVs) of the hGMPK CORE domain distant from the nucleotide-binding site of this domain modulate enzymatic activity without significantly affecting hGMPK's structure. Finally, we show that knocking down the hGMPK gene in lung adenocarcinoma cell lines decreases cellular viability, proliferation, and clonogenic potential while not altering the proliferation of immortalized, noncancerous human peripheral airway cells. Taken together, our results provide an important step toward establishing hGMPK as a potential biomolecular target, from both an orthosteric (ligand-binding sites) and allosteric (location of CORE domain-located nsSNVs) standpoint.


Assuntos
Guanilato Quinases/metabolismo , Regulação Alostérica , Animais , Linhagem Celular Tumoral , Cristalografia por Raios X , Guanilato Quinases/química , Guanilato Quinases/genética , Humanos , Cinética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Estrutura Terciária de Proteína , Interferência de RNA , RNA Interferente Pequeno , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
8.
Biochimie ; 152: 134-148, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29966734

RESUMO

Over the past two decades biologists and bioinformaticians have unearthed substantial evidence supporting a role for G-quadruplexes as important mediators of biological processes. This includes telomere damage signaling, transcriptional activity, and splicing. Both their structural heterogeneity and their abundance in oncogene promoters makes them ideal targets for drug discovery. Currently, there are hundreds of deposited DNA and RNA quadruplex atomic structures which have allowed researchers to begin using in silico drug screening approaches to develop novel stabilizing ligands. Here we provide a review of the past decade of G-quadruplex virtual drug discovery approaches and campaigns. With this we introduce relevant virtual screening platforms followed by a discussion of best practices to assist future G4 VS campaigns.


Assuntos
Descoberta de Drogas/métodos , Quadruplex G , Ensaios de Triagem em Larga Escala/métodos , Algoritmos , Simulação por Computador , DNA/química , Simulação de Acoplamento Molecular , Conformação de Ácido Nucleico , RNA/química
9.
PLoS One ; 13(4): e0195625, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29630682

RESUMO

The Florida manatee (Trichechus manatus latirotris) is a threatened aquatic mammal in United States coastal waters. Over the past decade, the appearance of papillomavirus-induced lesions and viral papillomatosis in manatees has been a concern for those involved in the management and rehabilitation of this species. To date, three manatee papillomaviruses (TmPVs) have been identified in Florida manatees, one forming cutaneous lesions (TmPV1) and two forming genital lesions (TmPV3 and TmPV4). We identified DNA sequences with the potential to form G-quadruplex structures (G4) across the three genomes. G4 were located on both DNA strands and across coding and non-coding regions on all TmPVs, offering multiple targets for viral control. Although G4 have been identified in several viral genomes, including human PVs, most research has focused on canonical structures comprised of three G-tetrads. In contrast, the vast majority of sequences we identified would allow the formation of non-canonical structures with only two G-tetrads. Our biophysical analysis confirmed the formation of G4 with parallel topology in three such sequences from the E2 region. Two of the structures appear comprised of multiple stacked two G-tetrad structures, perhaps serving to increase structural stability. Computational analysis demonstrated enrichment of G4 sequences on all TmPVs on the reverse strand in the E2/E4 region and on both strands in the L2 region. Several G4 sequences occurred at similar regional locations on all PVs, most notably on the reverse strand in the E2 region. In other cases, G4 were identified at similar regional locations only on PVs forming genital lesions. On all TmPVs, G4 sequences were located in the non-coding region near putative E2 binding sites. Together, these findings suggest that G4 are possible regulatory elements in TmPVs.


Assuntos
DNA Viral/química , DNA Viral/genética , Quadruplex G , Papillomaviridae/genética , Infecções por Papillomavirus/veterinária , Trichechus manatus/virologia , Animais , Sequência de Bases , Fenômenos Biofísicos , Florida , Genoma Viral , Humanos , Simulação de Dinâmica Molecular , Papillomaviridae/química , Papillomaviridae/isolamento & purificação , Infecções por Papillomavirus/virologia
10.
Nucleic Acids Res ; 46(7): e41, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29361140

RESUMO

We describe a rapid fluorescence indicator displacement assay (R-FID) to evaluate the affinity and the selectivity of compounds binding to different DNA structures. We validated the assay using a library of 30 well-known nucleic acid binders containing a variety chemical scaffolds. We used a combination of principal component analysis and hierarchical clustering analysis to interpret the results obtained. This analysis classified compounds based on selectivity for AT-rich, GC-rich and G4 structures. We used the FID assay as a secondary screen to test the binding selectivity of an additional 20 compounds selected from the NCI Diversity Set III library that were identified as G4 binders using a thermal shift assay. The results showed G4 binding selectivity for only a few of the 20 compounds. Overall, we show that this R-FID assay, coupled with PCA and HCA, provides a useful tool for the discovery of ligands selective for particular nucleic acid structures.


Assuntos
DNA/genética , Ensaios de Triagem em Larga Escala/métodos , Conformação de Ácido Nucleico , Relação Estrutura-Atividade , Benzotiazóis/química , Sítios de Ligação/genética , Análise por Conglomerados , DNA/química , Corantes Fluorescentes , Quadruplex G , Ligantes , Oligonucleotídeos/química , Oligonucleotídeos/genética , Análise de Componente Principal , Quinolinas/química
11.
Biochim Biophys Acta Gen Subj ; 1861(5 Pt B): 1414-1428, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28007579

RESUMO

BACKGROUND: AS1411 is a 26-mer G-rich DNA oligonucleotide that forms a variety of G-quadruplex structures. It was identified based on its cancer-selective antiproliferative activity and subsequently determined to be an aptamer to nucleolin, a multifunctional protein that preferentially binds quadruplex nucleic acids and which is present at high levels on the surface of cancer cells. AS1411 has exceptionally efficient cellular internalization compared to non-quadruplex DNA sequences. SCOPE OF REVIEW: Recent developments related to AS1411 will be examined, with a focus on its use for targeted delivery of therapeutic and imaging agents. MAJOR CONCLUSIONS: Numerous research groups have used AS1411 as a targeting agent to deliver nanoparticles, oligonucleotides, and small molecules into cancer cells. Studies in animal models have demonstrated that AS1411-linked materials can accumulate selectively in tumors following systemic administration. The mechanism underlying the cancer-targeting ability of AS1411 is not completely understood, but recent studies suggest a model that involves: (1) initial uptake by macropinocytosis, a form of endocytosis prevalent in cancer cells; (2) stimulation of macropinocytosis by a nucleolin-dependent mechanism resulting in further uptake; and (3) disruption of nucleolin-mediated trafficking and efflux leading to cargoes becoming trapped inside cancer cells. SIGNIFICANCE: Human trials have indicated that AS1411 is safe and can induce durable remissions in a few patients, but new strategies are needed to maximize its clinical impact. A better understanding of the mechanisms by which AS1411 targets and kills cancer cells may hasten the development of promising technologies using AS1411-linked nanoparticles or conjugates for cancer-targeted therapy and imaging. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.


Assuntos
Antineoplásicos/uso terapêutico , Diagnóstico por Imagem/métodos , Portadores de Fármacos , Quadruplex G , Guanosina/metabolismo , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Oligodesoxirribonucleotídeos/uso terapêutico , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Aptâmeros de Nucleotídeos , Sítios de Ligação , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Meios de Contraste/química , Meios de Contraste/metabolismo , Guanosina/química , Humanos , Ligantes , Neoplasias/genética , Neoplasias/metabolismo , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/metabolismo , Relação Estrutura-Atividade , Nucleolina
12.
Mol Cancer Ther ; 15(4): 560-73, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26832790

RESUMO

Karyopherin beta 1 (Kpnß1) is a nuclear transport receptor that imports cargoes into the nucleus. Recently, elevated Kpnß1 expression was found in certain cancers and Kpnß1 silencing with siRNA was shown to induce cancer cell death. This study aimed to identify novel small molecule inhibitors of Kpnß1, and determine their anticancer activity. An in silico screen identified molecules that potentially bind Kpnß1 and Inhibitor of Nuclear Import-43, INI-43 (3-(1H-benzimidazol-2-yl)-1-(3-dimethylaminopropyl)pyrrolo[5,4-b]quinoxalin-2-amine) was investigated further as it interfered with the nuclear localization of Kpnß1 and known Kpnß1 cargoes NFAT, NFκB, AP-1, and NFY and inhibited the proliferation of cancer cells of different tissue origins. Minimum effect on the proliferation of noncancer cells was observed at the concentration of INI-43 that showed a significant cytotoxic effect on various cervical and esophageal cancer cell lines. A rescue experiment confirmed that INI-43 exerted its cell killing effects, in part, by targeting Kpnß1. INI-43 treatment elicited a G2-M cell-cycle arrest in cancer cells and induced the intrinsic apoptotic pathway. Intraperitoneal administration of INI-43 significantly inhibited the growth of subcutaneously xenografted esophageal and cervical tumor cells. We propose that Kpnß1 inhibitors could have therapeutic potential for the treatment of cancer. Mol Cancer Ther; 15(4); 560-73. ©2016 AACR.


Assuntos
Antineoplásicos/farmacologia , beta Carioferinas/antagonistas & inibidores , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Simulação por Computador , Computadores Moleculares , Modelos Animais de Doenças , Descoberta de Drogas , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Expressão Gênica , Humanos , Camundongos , Modelos Moleculares , Terapia de Alvo Molecular , Ligação Proteica , Transporte Proteico , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade , Fatores de Transcrição/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , beta Carioferinas/química , beta Carioferinas/genética
13.
Oncotarget ; 6(20): 18001-11, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-26221874

RESUMO

Human tumors exhibit increased glucose uptake and metabolism as a result of high demand for ATP and anabolic substrates and this metabolotype is a negative prognostic indicator for survival. Recent studies have demonstrated that cancer cells from several tissue origins and genetic backgrounds require the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 (PFKFB4), a regulatory enzyme that synthesizes an allosteric activator of glycolysis, fructose-2,6-bisphosphate. We report the discovery of a first-in-class PFKFB4 inhibitor, 5-(n-(8-methoxy-4-quinolyl)amino)pentyl nitrate (5MPN), using structure-based virtual computational screening. We find that 5MPN is a selective inhibitor of PFKFB4 that suppresses the glycolysis and proliferation of multiple human cancer cell lines but not non-transformed epithelial cells in vitro. Importantly, 5MPN has high oral bioavailability and per os administration of a non-toxic dose of 5MPN suppresses the glucose metabolism and growth of tumors in mice.


Assuntos
Aminoquinolinas/farmacologia , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Lewis/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Glicólise/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Nitratos/farmacologia , Fosfofrutoquinase-2/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Administração Oral , Aminoquinolinas/administração & dosagem , Aminoquinolinas/química , Aminoquinolinas/farmacocinética , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacocinética , Disponibilidade Biológica , Carcinoma Pulmonar de Lewis/enzimologia , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/patologia , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células/efeitos dos fármacos , Desenho Assistido por Computador , Relação Dose-Resposta a Droga , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Células HCT116 , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estrutura Molecular , Terapia de Alvo Molecular , Nitratos/administração & dosagem , Nitratos/química , Nitratos/farmacocinética , Fosfofrutoquinase-2/genética , Fosfofrutoquinase-2/metabolismo , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Interferência de RNA , Relação Estrutura-Atividade , Transfecção , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
14.
PLoS One ; 10(3): e0121185, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25803615

RESUMO

The inhibition of NF-κB by genetic deletion or pharmacological inhibition of IKK2 significantly reduces laser-induced choroid neovascularization (CNV). To achieve a sustained and controlled intraocular release of a selective and potent IKK2 inhibitor, 2-[(aminocarbonyl)amino]-5-(4-fluorophenyl)-3-thiophenecarboxamide (TPCA-1) (MW: 279.29), we developed a biodegradable poly-lactide-co-glycolide (PLGA) polymer-delivery system to further investigate the anti-neovascularization effects of IKK2 inhibition and in vivo biosafety using laser-induced CNV mouse model. The solvent-evaporation method produced spherical TPCA-1-loaded PLGA microparticles characterized with a mean diameter of 2.4 »m and loading efficiency of 80%. Retrobulbar administration of the TPCA-1-loaded PLGA microparticles maintained a sustained drug level in the retina during the study period. No detectable TPCA-1 level was observed in the untreated contralateral eye. The anti-CNV effect of retrobulbarly administrated TPCA-1-loaded PLGA microparticles was assessed by retinal fluorescein leakage and isolectin staining methods, showing significantly reduced CNV development on day 7 after laser injury. Macrophage infiltration into the laser lesion was attenuated as assayed by choroid/RPE flat-mount staining with anti-F4/80 antibody. Consistently, laser induced expressions of Vegfa and Ccl2 were inhibited by the TPCA-1-loaded PLGA treatment. This TPCA-1 delivery system did not cause any noticeable cellular or functional toxicity to the treated eyes as evaluated by histology and optokinetic reflex (OKR) tests; and no systemic toxicity was observed. We conclude that retrobulbar injection of the small-molecule IKK2 inhibitor TPCA-1, delivered by biodegradable PLGA microparticles, can achieve a sustained and controllable drug release into choroid/retina and attenuate laser-induced CNV development without causing apparent systemic toxicity. Our results suggest a potential clinical application of TPCA-1 delivered by microparticles in treatment of CNV in the patients with age-related macular degeneration and other retinal neovascularization diseases.


Assuntos
Amidas/administração & dosagem , Neovascularização de Coroide/tratamento farmacológico , Quinase I-kappa B/antagonistas & inibidores , Ácido Láctico/administração & dosagem , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Ácido Poliglicólico/administração & dosagem , Inibidores de Proteínas Quinases/administração & dosagem , Tiofenos/administração & dosagem , Amidas/química , Animais , Neovascularização de Coroide/patologia , Modelos Animais de Doenças , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Feminino , Ácido Láctico/química , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Inibidores de Proteínas Quinases/química , Tiofenos/química
15.
Eur J Pharm Biopharm ; 92: 120-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25753197

RESUMO

Gold nanoparticles functionalized with biologically compatible layers may achieve stable drug release while avoiding adverse effects in cancer treatment. We study cisplatin and paclitaxel release from gold cores functionalized with hexadecanethiol (TL) and phosphatidylcholine (PC) to form two-layer nanoparticles, or TL, PC, and high density lipoprotein (HDL) to form three-layer nanoparticles. Drug release was monitored for 14 days to assess long term effects of the core surface modifications on release kinetics. Release profiles were fitted to previously developed kinetic models to differentiate possible release mechanisms. The hydrophilic drug (cisplatin) showed an initial (5-h) burst, followed by a steady release over 14 days. The hydrophobic drug (paclitaxel) showed a steady release over the same time period. Two layer nanoparticles released 64.0±2.5% of cisplatin and 22.3±1.5% of paclitaxel, while three layer nanoparticles released the entire encapsulated drug. The Korsmeyer-Peppas model best described each release scenario, while the simplified Higuchi model also adequately described paclitaxel release from the two layer formulation. We conclude that functionalization of gold nanoparticles with a combination of TL and PC may help to modulate both hydrophilic and hydrophobic drug release kinetics, while the addition of HDL may enhance long term release of hydrophobic drug.


Assuntos
Antineoplásicos/administração & dosagem , Cisplatino/administração & dosagem , Nanopartículas Metálicas , Paclitaxel/administração & dosagem , Antineoplásicos/química , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Química Farmacêutica/métodos , Cisplatino/química , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Ouro/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Lipoproteínas HDL/química , Modelos Químicos , Paclitaxel/química , Fosfatidilcolinas/química , Compostos de Sulfidrila/química
16.
PLoS One ; 9(12): e115580, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25526084

RESUMO

Mutations occur at four specific sites in the hTERT promoter in >75% of glioblastomas and melanomas, but the mechanism by which the mutations affect gene expression remains unexplained. We report biophysical computational studies that show that the hTERT promoter sequence forms a novel G-quadruplex structure consisting of three contiguous, stacked parallel quadruplexes. The reported hTERT mutations map to the central quadruplex within this structure, and lead to an alteration of its hydrodynamic properties and stability.


Assuntos
Quadruplex G , Modelos Moleculares , Regiões Promotoras Genéticas , Telomerase/química , Sequência de Bases , Dicroísmo Circular , Biologia Computacional/métodos , Humanos , Hidrodinâmica , Simulação de Dinâmica Molecular , Mutação , Telomerase/genética
17.
Mol Cell Biol ; 34(7): 1198-207, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24421393

RESUMO

The proapoptotic Bcl-2 protein Bax by itself is sufficient to initiate apoptosis in almost all apoptotic paradigms. Thus, compounds that can facilitate disruptive Bax insertion into mitochondrial membranes have potential as cancer therapeutics. In our study, we have identified small-molecule compounds predicted to associate with the Bax hydrophobic groove by a virtual-screen approach. Among these, one lead compound (compound 106) promotes Bax-dependent but not Bak-dependent apoptosis. Importantly, this compound alters Bax protein stability in vitro and promotes the insertion of Bax into mitochondria, leading to Bax-dependent permeabilization of the mitochondrial outer membrane. Furthermore, as a single agent, compound 106 inhibits the growth of transplanted tumors, probably by inducing apoptosis in tumors. Our study has revealed a compound that activates Bax and induces Bax-dependent apoptosis, which may lead to the development of new therapeutic agents for cancer.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Neoplasias Experimentais/tratamento farmacológico , Pirazóis/farmacologia , Compostos de Piridínio/farmacologia , Proteína X Associada a bcl-2/metabolismo , Animais , Antineoplásicos/química , Sítios de Ligação , Linhagem Celular , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Moleculares , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Pirazóis/química , Compostos de Piridínio/química , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/química
18.
Nucl Med Biol ; 41(2): 179-85, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24373858

RESUMO

INTRODUCTION: AS1411 is a 26-base guanine-rich oligonucleotide aptamer shown binding to surface nucleolin, a protein over-expressed in multiple cancer cells, thus AS1411 labeled with a PET isotope can be explored as a potential diagnostic imaging agent. Our objective was to perform preliminary biological characterization of (64)Cu-labeled AS1411 in vitro and in vivo. METHODS: Four chelators (DOTA, CB-TE2A, DOTA-Bn and NOTA-Bn) were selected to label AS1411 with Cu-64. 185kBq (5µCi) of each tracer was incubated in each well with H460 cells at 37°C for 1, 3, 6, 12, 24 and 48h, respectively (n=4). For microPET/CT imaging, 7.4MBq (200µCi) of AS1411 labeled with either (64)Cu-DOTA or (64)Cu-CB-TE2A was I.V. injected and multiple scans were obtained at 1, 3, 6 and 24h post injection. Afterward in vivo biodistribution studies were performed. RESULTS: Percent uptake of (64)Cu-DOTA-AS1411 and (64)Cu-CB-TE2A-AS1411 was significantly higher than that of (64)Cu-DOTA-Bn-AS1411 and (64)Cu-NOTA-Bn-AS1411. About 90% of uptake for (64)Cu-DOTA-AS1411 and (64)Cu-CB-TE2A-AS1411 was internalized into cells within 3h and the internalization process was completed before 24h. Both tracers demonstrated reasonable in vivo stability and high binding affinity to the cells. MicroPET imaging with (64)Cu-CB-TE2A-AS1411 showed clear tumor uptake at both legs from 1 to 24h post injection, whereas both tumors were undetectable for up to 24h with (64)Cu-DOTA-AS1411. In addition, (64)Cu-CB-TE2A-AS1411 had faster in vivo pharmacokinetics than (64)Cu-DOTA-AS1411 with lower liver uptake and higher tumor to background contrast. CONCLUSION: CB-TE2A is a preferred chelator with higher tumor-to-background ratio, lower liver uptake and faster clearance than DOTA. Aptamer imaging with (64)Cu-CB-TE2A-AS1411 may be feasible for detecting lung cancer, if an appropriate chelator can be identified and further validation can be performed with a known control oligonucleotide. It may also be used as a companion diagnostic imaging agent for AS1411 in the treatment of cancer.


Assuntos
Radioisótopos de Cobre , Neoplasias Pulmonares/patologia , Oligodesoxirribonucleotídeos , Tomografia por Emissão de Pósitrons/métodos , Tomografia Computadorizada por Raios X/métodos , Animais , Aptâmeros de Nucleotídeos , Linhagem Celular Tumoral , Feminino , Humanos , Marcação por Isótopo , Neoplasias Pulmonares/diagnóstico por imagem , Camundongos , Oligodesoxirribonucleotídeos/metabolismo , Oligodesoxirribonucleotídeos/farmacocinética , Radioquímica
19.
Mol Cancer Ther ; 12(8): 1461-70, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23674815

RESUMO

In human cancers, loss of PTEN, stabilization of hypoxia inducible factor-1α, and activation of Ras and AKT converge to increase the activity of a key regulator of glycolysis, 6-phosphofructo-2-kinase (PFKFB3). This enzyme synthesizes fructose 2,6-bisphosphate (F26BP), which is an activator of 6-phosphofructo-1-kinase, a key step of glycolysis. Previously, a weak competitive inhibitor of PFKFB3, 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO), was found to reduce the glucose metabolism and proliferation of cancer cells. We have synthesized 73 derivatives of 3PO and screened each compound for activity against recombinant PFKFB3. One small molecule, 1-(4-pyridinyl)-3-(2-quinolinyl)-2-propen-1-one (PFK15), was selected for further preclinical evaluation of its pharmacokinetic, antimetabolic, and antineoplastic properties in vitro and in vivo. We found that PFK15 causes a rapid induction of apoptosis in transformed cells, has adequate pharmacokinetic properties, suppresses the glucose uptake and growth of Lewis lung carcinomas in syngeneic mice, and yields antitumor effects in three human xenograft models of cancer in athymic mice that are comparable to U.S. Food and Drug Administration-approved chemotherapeutic agents. As a result of this study, a synthetic derivative and formulation of PFK15 has undergone investigational new drug (IND)-enabling toxicology and safety studies. A phase I clinical trial of its efficacy in advanced cancer patients will initiate in 2013 and we anticipate that this new class of antimetabolic agents will yield acceptable therapeutic indices and prove to be synergistic with agents that disrupt neoplastic signaling.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Neoplasias/metabolismo , Fosfofrutoquinase-2/antagonistas & inibidores , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/química , Feminino , Glucose/metabolismo , Humanos , Células Jurkat , Camundongos , Modelos Moleculares , Conformação Molecular , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fosfofrutoquinase-2/química , Fosfofrutoquinase-2/metabolismo , Ligação Proteica , Bibliotecas de Moléculas Pequenas , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Top Curr Chem ; 330: 179-210, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22886555

RESUMO

Nucleic acids enriched in guanine bases can adopt unique quadruple helical tertiary structures known as G-quadruplexes. G-quadruplexes have emerged as attractive drug targets as many G-quadruplex-forming sequences have been discovered in functionally critical sites within the human genome, including the telomere, oncogene promoters, and mRNA processing sites. A single G-quadruplex-forming sequence can adopt one of many folding topologies, often resulting in a lack of a single definitive atomic-level resolution structure for many of these sequences and a major challenge to the discovery of G-quadruplex-selective small molecule drugs. Low-resolution techniques employed to study G-quadruplex structures (e.g., CD spectroscopy) are often unable to discern between G-quadruplex structural ensembles, while high-resolution techniques (e.g., NMR spectroscopy) can be overwhelmed by a highly polymorphic system. Hydrodynamic bead modeling is an approach to studying G-quadruplex structures that could bridge the gap between low-resolution techniques and high-resolution molecular models. Here, we present a discussion of hydrodynamic bead modeling in the context of studying G-quadruplex structures, highlighting recent successes and limitations to this approach, as well as an example featuring a G-quadruplex structure formed from the human telomere. This example can easily be adapted to the investigation of any other G-quadruplex-forming sequences.


Assuntos
Quadruplex G , Ácidos Nucleicos/química , Animais , Sequência de Bases , Descoberta de Drogas , Humanos , Hidrodinâmica , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA