Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 3696, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32728046

RESUMO

ENCODE comprises thousands of functional genomics datasets, and the encyclopedia covers hundreds of cell types, providing a universal annotation for genome interpretation. However, for particular applications, it may be advantageous to use a customized annotation. Here, we develop such a custom annotation by leveraging advanced assays, such as eCLIP, Hi-C, and whole-genome STARR-seq on a number of data-rich ENCODE cell types. A key aspect of this annotation is comprehensive and experimentally derived networks of both transcription factors and RNA-binding proteins (TFs and RBPs). Cancer, a disease of system-wide dysregulation, is an ideal application for such a network-based annotation. Specifically, for cancer-associated cell types, we put regulators into hierarchies and measure their network change (rewiring) during oncogenesis. We also extensively survey TF-RBP crosstalk, highlighting how SUB1, a previously uncharacterized RBP, drives aberrant tumor expression and amplifies the effect of MYC, a well-known oncogenic TF. Furthermore, we show how our annotation allows us to place oncogenic transformations in the context of a broad cell space; here, many normal-to-tumor transitions move towards a stem-like state, while oncogene knockdowns show an opposing trend. Finally, we organize the resource into a coherent workflow to prioritize key elements and variants, in addition to regulators. We showcase the application of this prioritization to somatic burdening, cancer differential expression and GWAS. Targeted validations of the prioritized regulators, elements and variants using siRNA knockdowns, CRISPR-based editing, and luciferase assays demonstrate the value of the ENCODE resource.


Assuntos
Bases de Dados Genéticas , Genômica , Neoplasias/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Redes Reguladoras de Genes , Humanos , Mutação/genética , Reprodutibilidade dos Testes , Fatores de Transcrição/metabolismo
2.
Blood Adv ; 3(21): 3201-3213, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31698451

RESUMO

Human B-cell precursor acute lymphoid leukemias (BCP-ALLs) comprise a group of genetically and clinically distinct disease entities with features of differentiation arrest at known stages of normal B-lineage differentiation. We previously showed that BCP-ALL cells display unique and clonally heritable, stable DNA replication timing (RT) programs (ie, programs describing the variable order of replication and subnuclear 3D architecture of megabase-scale chromosomal units of DNA in different cell types). To determine the extent to which BCP-ALL RT programs mirror or deviate from specific stages of normal human B-cell differentiation, we transplanted immunodeficient mice with quiescent normal human CD34+ cord blood cells and obtained RT signatures of the regenerating B-lineage populations. We then compared these with RT signatures for leukemic cells from a large cohort of BCP-ALL patients with varied genetic subtypes and outcomes. The results identify BCP-ALL subtype-specific features that resemble specific stages of B-cell differentiation and features that seem to be associated with relapse. These results suggest that the genesis of BCP-ALL involves alterations in RT that reflect biologically significant and potentially clinically relevant leukemia-specific epigenetic changes.


Assuntos
Cromossomos/genética , Período de Replicação do DNA , Leucemia/genética , Leucemia/patologia , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos B/patologia , Biomarcadores , Neoplasias do Sistema Nervoso Central/secundário , Biologia Computacional/métodos , Modelos Animais de Doenças , Progressão da Doença , Suscetibilidade a Doenças , Feminino , Perfilação da Expressão Gênica , Variação Genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Xenoenxertos , Humanos , Imunofenotipagem , Leucemia/mortalidade , Masculino , Camundongos , Camundongos Knockout , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/mortalidade , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia
3.
Cell Cycle ; 17(13): 1667-1681, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29963964

RESUMO

Organismal aging entails a gradual decline of normal physiological functions and a major contributor to this decline is withdrawal of the cell cycle, known as senescence. Senescence can result from telomere diminution leading to a finite number of population doublings, known as replicative senescence (RS), or from oncogene overexpression, as a protective mechanism against cancer. Senescence is associated with large-scale chromatin re-organization and changes in gene expression. Replication stress is a complex phenomenon, defined as the slowing or stalling of replication fork progression and/or DNA synthesis, which has serious implications for genome stability, and consequently in human diseases. Aberrant replication fork structures activate the replication stress response leading to the activation of dormant origins, which is thought to be a safeguard mechanism to complete DNA replication on time. However, the relationship between replicative stress and the changes in the spatiotemporal program of DNA replication in senescence progression remains unclear. Here, we studied the DNA replication program during senescence progression in proliferative and pre-senescent cells from donors of various ages by single DNA fiber combing of replicated DNA, origin mapping by sequencing short nascent strands and genome-wide profiling of replication timing (TRT). We demonstrate that, progression into RS leads to reduced replication fork rates and activation of dormant origins, which are the hallmarks of replication stress. However, with the exception of a delay in RT of the CREB5 gene in all pre-senescent cells, RT was globally unaffected by replication stress during entry into either oncogene-induced or RS. Consequently, we conclude that RT alterations associated with physiological and accelerated aging, do not result from senescence progression. Our results clarify the interplay between senescence, aging and replication programs and demonstrate that RT is largely resistant to replication stress.


Assuntos
Senescência Celular , Período de Replicação do DNA , Estresse Fisiológico , Proteína A de Ligação a Elemento de Resposta do AMP Cíclico/metabolismo , Fibroblastos/citologia , Humanos , Laminas/metabolismo , Oncogenes , Progéria/patologia , Domínios Proteicos
4.
Proc Natl Acad Sci U S A ; 114(51): E10972-E10980, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29196523

RESUMO

Progeroid syndromes are rare genetic disorders that phenotypically resemble natural aging. Different causal mutations have been identified, but no molecular alterations have been identified that are in common to these diseases. DNA replication timing (RT) is a robust cell type-specific epigenetic feature highly conserved in the same cell types from different individuals but altered in disease. Here, we characterized DNA RT program alterations in Hutchinson-Gilford progeria syndrome (HGPS) and Rothmund-Thomson syndrome (RTS) patients compared with natural aging and cellular senescence. Our results identified a progeroid-specific RT signature that is common to cells from three HGPS and three RTS patients and distinguishes them from healthy individuals across a wide range of ages. Among the RT abnormalities, we identified the tumor protein p63 gene (TP63) as a gene marker for progeroid syndromes. By using the redifferentiation of four patient-derived induced pluripotent stem cells as a model for the onset of progeroid syndromes, we tracked the progression of RT abnormalities during development, revealing altered RT of the TP63 gene as an early event in disease progression of both HGPS and RTS. Moreover, the RT abnormalities in progeroid patients were associated with altered isoform expression of TP63 Our findings demonstrate the value of RT studies to identify biomarkers not detected by other methods, reveal abnormal TP63 RT as an early event in progeroid disease progression, and suggest TP63 gene regulation as a potential therapeutic target.


Assuntos
Período de Replicação do DNA , Progéria/genética , Idoso de 80 Anos ou mais , Biomarcadores , Criança , Fibroblastos/metabolismo , Expressão Gênica , Genômica/métodos , Humanos , Recém-Nascido , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Progéria/metabolismo , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA